TABLES

INTENTIONALLY LEFT BLANK

Tables in Geologic Database	Primary (P) or Secondary (S) Tables ^a	Type of Data and Information in Table
BoreholeData	Р	This table includes name, identification, and coordinates of boreholes in UTM NAD 27, and completion information, if available.
Borehole LoggerData	Р	If borehole logger was used to enter data, this table contains details of borehole logs.
CAS ^c Index	Р	This table includes names used to describe data, such as peak flow, or chemical names. Also elevation of sample and range of spatial coordinates for the specific data type are provided in this table.
Category	Р	This table provides further specific data identification, such as precipitation or water level, historical streamflow, volatile organic compounds, carbonates, etc. It can be used to group data types.
FLDIndex	Р	This table includes sample type, such as water, air, rock, or soil samples.
Image	Р	This table references a directory structure where scanned or html images are stored. This table is used to direct the data in the LabData table to a specific source for quality assurance or detailed explanation purposes.
LabData	Ρ	The major types of data are incorporated in this table. Every record identifies the location identification, borehole identification, image identification, and date of the list of sample information, including depth of the sample, sample identification, category identification, measurement units, amount, measurement type, CAS index, and source identification. CAS identification can be used to specify a mixture of various data in one field.
Lithologic Description	S	This is an optional table used to keep track of lithological naming conventions and is a supplement to the soil detail table. The contents of this table are not used in queries.
Location	Р	This table identifies and classifies locations for the data. The geographical area of interest is organized into 13 different locations corresponding to the hydrologic basins.
Measure Type	Р	This table specifies the level of reliability of the information.
Soil Type Table	Р	Lithologic descriptions with their geologic symbols and colors to be used for maps are identified here.
Soil Detail Table	Р	In this table, the top and bottom of each geologic or hydrologic unit encountered in the borehole are defined.
References	S	References are listed in this table.
Selected Boreholes	S	This temporary table is generated during database querying for borehole geology. Queries can be saved as permanent tables by renaming this table.
LabData Archive	S	This table is an exact duplicate of LabData and is user-maintained for quality assurance purposes.

Table 2.4-1Summary of Contents of Geologic Database

NOTES: ^aPrimary tables are required.

^bSecondary tables are informational.

^cCAS = chemical abstract system. Originally, CAS was designed to keep track of chemical names using an indexing system. CAS has been expanded to include other types of data, such as temperature, pressure, humidity, water table elevation, or any other user-defined data type.

		Depth to Bot	Depth to Bottom of Layer			
Probe	Hydrogeologic Unit	(ft)	(m)	Diffusivity ^a (cm/sec)		
1	Tiva Canyon	600.00	182.88	1.43E-01		
2	Paintbrush Tuff non- welded	934.38	284.80	2.61E+01		
	Topopah Spring					
3] [1,034.38	315.28	1.63E+01		
4][1,198.36	365.26	3.27E+00		
5	Fault	1,206.56	367.76	4.90E+03		
6	Calico Hills non- welded	1,239.37	377.76	4.90E+02		
7]	1,403.35	427.74	4.90E+02		
8	Prow Pass	1,485.37	452.74	Saturated		
9]	1,613.65	491.84	Saluraleu		

Table 3.1-1aResults of Inverse Simulation of Barometric Response in UE-25 ONC#1 Pressure Probes

NOTE: ^aPneumatic diffusivity is the ratio of pneumatic conductivity to porosity at standard temperature and pressure conditions.

Table 3.1-1b Results of Inverse Simulation of Barometric Response in USW NRG-4 Pressure Probes

		Depth to Bot	Pneumatic	
Probe	Hydrogeologic Unit	(ft)	(m)	Diffusivity ^ª (cm/sec)
1	Tiva Canyon	315.00	96.01	2.87E-01
2	Paintbrush Tuff non- welded	466.00	142.04	6.86E-03
3				
4	Topopah Spring	514.00	156.67	4.90E-03
5		544.00	165.81	4.90E+01
6		653.00	199.03	2.25E+03
7		719.00	219.15	2.25E+03

NOTE: ^aPneumatic diffusivity is the ratio of pneumatic conductivity to porosity at standard temperature and pressure conditions.

Nye County Nuclear Waste Repository Project Office Independent Scientific Investigations Program Final Report, Fiscal Years 1996–2001

Depth of Pu	Imping Port		Permeability		
(ft)	(m)	Hydrogeologic Unit	(m²)	(darcy)	
638.00	194.46	Topopah Spring	2.17E-13	0.22	
1,164.00	354.79		3.06E-13	0.31	
1,195.00	364.24	Calico Hills	5.13E-12	5.2	
1,225.00	373.38	non-welded	2.96E-12	3.0	

Table 3.1-1c UE-25 ONC#1 Vacuum Test Results

Table 3.1-2
Concentrations of Chemical Constituents in Gas Samples from the Atmosphere, the
Exploratory Studies Facility, and UE-25 ONC#1 for June 1997

Depth (feet) or Sample Location	Lithostratigraphic Unit	Methane (pptv)	Carbon monoxide (pptv)	Carbon dioxide (ppmv)	Nitrous Oxide (ppbv)	Chlorinated Fluorocarbon F12 (pptv)	Chlorinated Fluorocarbon F11 (pptv)	Chlorinated Fluorocarbon F113 (pptv)	Trichloroethane (pptv)	Carbon tetrachloride (pptv)	Tetrachloroethylene (pptv)	Oxygen (%)	N _i trogen (%)	Deuterium (delta D)
Atmo- sphere	_	1,994	104	316	431	668	290	62	95	111	0	-	Ι	1
ESF	Topopah Spring	1,847	260	503	411	653	310	63	1,267	192	-	_	-	-
ESF	Topopah Spring	1,857	482	505	403	634	288	61	976	144	-	_	-	-
1,150	Topopah Spring (Fault)	385	32	799	572	316	149	29	0	56	0	-	-	-160
1,195	Topopah Spring (Fault)	234	28	894	612	237	99	18	0	34	0	-	-	-146
1,225	Calico Hills	0	0	2,064	586	249	110	22	0	35	-	-	-	-150

NOTE: ESF = Exploratory Studies Facility; % = parts per 100 by volume; ppmv = parts per million by volume; ppbv = parts per billion by volume; pptv = parts per trillion by volume

	1.3			
Depth (ft)	Lithostrati-graphic Unit	Delta Carbon-13 (per mil)	% Modern Carbon	Carbon-14 Corrected Apparent Age (years BP)
575	Tiva Canyon	-11.8	51.83	5280
638	Topopah Spring	-11.3	36.38	8120
1,164	Topopah Spring	-6	44.54	6495
1,195	Topopah Spring	-5.7	38.27	7715
1,225	Calico Hills	-10.3	35.97	8215
1,428	Prow Pass	-7.4	15.85	14800
1,501	Prow Pass	-8.8	16.91	14275

 Table 3.1-3

 Results of Gas Sampling in UE-25 ONC#1 for June 1997 (carbon isotopes)

NOTE: BP = before present

Lithology	Diagenetic Events and Paragenesis
Welded Tuff	Fractures and pores filled with quartz and other silica polymorphs.
	Fractures filled with quartz and manganese oxide; some fractures open and close several times through various events. The fact that quartz fills the fracture does not preclude the fracture from opening and becoming reactive as a conduit.
	Fractures and pores filled with iron and/or manganese oxide-oxyhydroxides.
	Fractures and pores filled with carbonates or carbonates and opal-CT.
	Fractures and pores filled with zeolites and/or clays.
	Fractures that have coatings of the above minerals on the fracture walls but are not in the classical sense ""filled" with these minerals.
	Fractures filled or partially filled with authigenics that have extensive weathering on and in the fracture walls. These are fractures with bleach zones (Figure 3.1-7). Bleach zones develop as weathering fronts in fracture conduits that are actively transporting fluids. They are compelling evidence of past flow in fractures flow. Tuff minerals and glass are dissolved, and phyllosilicates dominated by clinoptilolite and smectites are deposited. The matrix porosity in the bleach zone is greater than the porosity in the fresh unweathered tuff away from the fracture. This is due to volume changes caused by hydration of primary minerals and obsidian, the conversion of obsidian to perlite, and the conversion of the perlite to open phyllosilicates. In addition, new splay fractures in the bleached zones were formed due to differential stresses caused by hydration. These splay fractures generally are connected to the main fracture conduit. Neominerals created during this hydration process have significant capabilities for sorption and filtration of cations and complex aqueous species. Bleach zones are commonly seven to ten times the diameter of the original fracture on each wall-side of the fracture. They provide a very significant area of potential retardation along past and presently active paths of transport. The bleach zones clearly pre-date the fracture fillings (mostly quartz), and, since most of the quartz-filled fractures in the bleached zones where the unaltered matrix. These reactions extend the alteration front into the matrix on a grain-by-grain basis, in addition to the creation of new microfracture pathways from the bleach zone into the fresh matrix. The net overall result is an increase in the overall porosity and potential sorption capacity along the bleach zone fracture pathway with time.
Poorly Welded Tuff	Diagenesis in poorly welded tuffs occurs both in the tuff matrix and in the fracture pathways. Both locations fill with authigenic minerals, thereby retarding fluid transport in the vadose zone. The minerals that fill pore space are mostly manganese oxyhydroxides, carbonates, clays, and zeolites. In some cases, quartz and quartz polymorphs were observed. Some of the fractures reopen, similar to the welded tuffs. Fracture fillings tend to be mostly carbonates and manganese oxyhydroxides with minor amounts of zeolites, quartz, and quartz polymorphs. Matrix pores on fracture walls tend to fill with authigenics earlier than pores that are located deeper in the matrix. In many cases, fracture flow dominates.

Table 3.1-4Diagenetic Events Observed in UE-25 ONC#1

Table 3.3-1
Estimated Fluid Particle Velocity through Fractures in Various Percolation/
Infiltration Scenarios

		Average Partic	Average Particle Velocity through Fractures at Repository Level (Topopah Spring welded unit) (mm/yr.) ^a								
		Present-Day Cli	imate Infiltration/	Extreme Clim Percola	ate Infiltration/ tion Rate						
		Lower Bound Mean Upper Bound			Monsoon	Glacial Transition					
Effective Porosity	Matrix K (mm/yr.)	2 mm/yr.	7 mm/yr.	12 mm/yr.	20 mm/yr.	30 mm/yr.					
0.001154	0.0263	1,711	6,044	10,378	17,311	25,978					
0.000536	0.0263	3,685	13,022	22,358	37,296	55,968					
0.001154	2.63	full matrix flow	3,789	8,123	15,056	23,723					
0.000536	2.63	full matrix flow	8,164	17,500	32,438	51,110					

NOTE: ^aPercolation was estimated from maps (DOE [2000c, Figures 6-12, 6-13, 6-14, 6-43, 6-44]). Full matrix flow is assumed to occur when percolation rate is smaller than matrix K.

Well/ Borehole ID ^a	Well Type ^b	Drilling Method ^c	Total Depth (feet below ground surface)	Screened Interval(s) (feet ^d below ground surface)	Sand Pack or Open Hole Intervals (feet ^d below ground surface)	Well Casing Depth (feet ^d below ground surface)	Well Casing Outside Diameter (inches ^e)
1DX ^f	W	ARC	2,500	72.1 <i>-</i> 52.4 NA	39.5-72.5 NA	72.5 1,375.9	2.375 2.375
1S	W	AH/ARC	310	2,160-2,240 160-180 210-270	2,160-2,240 ⁹ 151.8-189.3 203.7-321.0	2,294.7 290.5	2.375 6.625
2DB	W	FR	3,075	NA	2,685-3,075	2,685	8.625
3S	W	AH/ARC	550.0	249.8-269.8	238.5-274.1 295.6-550.0	294.8	6.625
4PA	Р	AH	499.7	405.3-485.2	394.7-499.7	495.2	2.875
4PB	Р	AH	849.5	739.5-839.2	718-849.5	849.2	2.875
5S	Р	AH/ARC	1,200.0	601.4-779.9	597.6-1,200.0	790	2.375
5SB	Р	AH	499.4	379.3-489.0	366.0-499.4	499.4	2.875
7S	Р	ARC	53.2	28.0-40.0	26.0-53.2	45.0	2.875
7SC	W	ARC	778.5	80.0-90.0; 180.0-210.0; 270.0-370.0; 429.8-449.8	75.9-99.8; 164.7-220; 262.9-379.3; 422.4- 470.0	459.7	6.625
9SX ^f	W	DC/AH	397	90.0-120.0; 140.1-160.1; 250.1-290.1; 330.1-340.1	85.0-126.1; 134.1- 167.1; 245.5-295.6; 325.0-360.5	360.5	6.625
12PA	Р	AH	389.5	324.7-384.4	317.5-389.5	389.5	2.875
12PB	Р	AH	399.8	325.0-384.7	316.2-399.8	399.75	2.875
12PC	Р	AH	249.6	170.1-229.6	160.4-249.6	249.6	2.875
15P	Р	AH	289.6	200.1-259.9	191.0-274.5	270	2.875
19D1 ^f	W	FR	1,456.3	413.0-431.2; 498.0-516.1; 577.8-675.7; 722.6-795.2; 882.2-980.3; 1,122.2- 1,219.6; 1,296.7-1,379.7	405.0-437.0; 487.0- 519.0; 563.0-691.0; 711.0-795.0; 831.0- 1,060.0; 1,109.0- 1,220.0; 1,252.0- 1,456.3	1,421.9	7
19D	Х	ARC	1,438.3	NA	NA	NA	NA
19P	Р	AH	499.2	359.2-468.6	351.5-474.5	468.6	2.875
Washburn- 1X	Ρ	ARC	658.0	333.0-353.0; 420.0-480.0	310.0-353.0; 399.5- 658.0	353; 510	1.9
3DB	С	FR	505	NA	NA	NA	NA
12D	С	FR	68	NA	NA	NA	NA
15D	С	FR	607	NA	NA	NA	NA
1D ^h	Х	DC	57.7	NA	NA	NA	NA
2D	Х	ARC	1,618.4	NA	NA	NA	NA
3D	Х	ARC	2,500	NA	NA	521.7	7

 Table 4.1-1

 Drilling Methods, Well Types, Casing Sizes, and Screened Intervals

Well/ Borehole ID ^a	Well Type ^b	Drilling Method ^c	Total Depth (feet below ground surface)	Screened Interval(s) (feet ^d below ground surface)	Sand Pack or Open Hole Intervals (feet ^d below ground surface)	Well Casing Depth (feet ^d below ground surface)	Well Casing Outside Diameter (inches ^e)
9S ^h	Х	DC	100	NA	NA	NA	NA
7SB	Х	ARC	102.5	NA	NA	NA	16

NOTES: ^a"NC-EWDP-" is the official prefix of all new Nye County wells. ^bW = single or multiple screen well; P = piezometer (single or multiple string); C = conductor casing only; X = exploratory borehole

^cDC = diamond drill coring; AH = dual wall air hammer; ARC = dual wall air reverse circulation; FR = flooded mud reverse circulation

^dConversion for feet to meters: 1 ft = 0.3048 m

^eConversion for inches to centimeters: 1 in. = 2.54 cm

^f X-designation only refers to samples sent to the Yucca Mountain Sample Management Facility

^gFractured cement grout

^hOriginal cored borehole

NA = not applicable.

Hole/Well ID ^a	Date	Log Type	Borehole Depth at time of Logging (feet)	Logged Interval (feet)	Comments
Washburn-1X	12/6/98	1 ^b	657	0-657	None
Washbum-TX		2 ^c	657	340-511	None
1D					Not logged
	1/10/99	1,2 ^d	2,040	0-1,600	Caliper log to 228 ft
	1/14/99	2 ^d	2,320	0-1,155	Single run to 1,155 ft; unstable hole
	1/23/99	1	2,500	0-2,470	Run inside HX drill rod
1DX/1D	1/23/99	2 ^d	2,500	1,147-2,425 ^d	Resistivity, fluid resistivity, temperature, spontaneous potential, and natural gamma in pieces: 2,425-2,292 ft; 2,300-2,086 ft; 2,100-1,886 ft; 1,900-1,686 ft; 1,700-1,486 ft; 1,500-1,227 ft; 1,160-1,147 ft
	1/24/99	2 ^d	2,500	0-2,488	Temperature log only
	1/26/00	3 ^e	2,500	0-1,133	Density and casing collar locator logs
	4/20/99			0-1,152	None
1S	2/3/99	2	309	0-309	None
9S					Not logged
057/05	12/14/98	1	397	0-397	None
307/30	1/15/99	4	397	0-397	None
26	3/11/99	2 ^d &3	550	0-530	Well was cased to 294.8 ft
35	3/30/01	2 ^d	550	0-515	Caliper only
	1/22/99	1	1,275	0-1,250	Spontaneous potential, natural gamma, temperature, fluid resistivity. Logging was conducted in drill pipe.
3D	2/3/99	2	2,229	0-2,260	None
00	2/5/99	2	2,500	0-2,500	None
	2/17/99	3 ^d	2,500	0-975	Spinner logs only
	5/17/99	3 ^d	2,500	60-815	Idronaut ^f hydrochemistry tool.
59	2/21/00	1	1,200	0-1,160	None
00	2/21/99	2 ^d	1,200	500-950	Caliper log for 500-690 ft only
2D	2/22/99	1	1,618	0-428	None

Table 4.1-2 **Geophysical Logging Conducted in Phase I Boreholes/Wells**

NOTES: ^a "NC-EWDP-" is the official prefix of all new Nye County wells.

^bLogged inside drill pipe or casing (cased log) generally includes natural gamma, density (gamma/gamma), neutron moisture, temperature, and deviation logs.

^cLogged in open borehole (open hole logs) generally includes logs in footnote b and normal, lateral, and single point resistivity, natural gamma, spontaneous potential, temperature, fluid resistivity, and caliper logs. ^dNot a complete suite of logs for type; see comments column.

^eLogged inside well casing (completion log) generally includes natural gamma, density (gamma/gamma), and temperature logs.

^t Idronaut hydrochemistry tool includes: salinity, conductivity, pressure, oxygen saturation, redox, oxygen concentration, pH, temperature.

Hole/Well ID ^a	Date	Log Type	Borehole Depth at time of Logging (feet)	Logged Interval (feet)	Comments	
4PA	1/10/00	1 ^b	500	0-500	None	
4PB	1/23/00	1	850	0-850	None	
	1/23/00	2 ^c	503	0-503	None	
	8/14/00	2	2142	0-1910	Borehole cased to 500 ft	
2DB	8/24/00 to 8/25/00	2	2723	0-2723	None	
200	8/31/00	2	3075	0-2495	Hole bridged	
	9/24/00	2 ^d	3075	0-2635	Caliper log only; pre-casing	
	10/19/00	2 ^d	3075	2655-2814	Caliper log only; post-casing	
5SB	2/7/00	1	500	0-500	None	
7S	2/28/00	2	53	0-49	Surface casing to 25 ft	
15P	2/28/00	1	290	0-290	None	
19P	3/10/00	1	500	0-500	None	
1204	3/23/00	1	390	0-390	None	
12PA	3/24/00	2	390	205-390	Logged in segments	
12PB	3/30/00	1	400	0-400	None	
121 0	3/30/00 to 3/31/00	2	400	230-385	None	
12PC	4/11/00	1	250	0-242	None	
	3/26/00	2	350	0-350	None	
19D	3/30/00	1 ^d	657	0-654	Deviation log only	
	4/2/00	1	1437	0-1418	None	
	4/14/00	1 ^d	846	0-800	Deviation log only	
	4/16/00	2	1448	0-1448	None	
1001/100	4/24/00	2 ^d	1448	0-1432	Temperature, density, and caliper logs only	
1001/100	5/3/00	3 ^{d,e}	1456	0-1430	Temperature and density logs only	
	5/10/00	3	1456	0-1420	Includes spinner logs	
	5/11/00 to 5/12/00	3 ^d	1456	0-1400	Various spinner logs only	
15D	4/3/00	2	607	0-600	None	
	4/15/00	1	779	0-779	None	
750	1/16/01	2	779	0-418	Hole cleaned out to 468 ft only	
,00	3/26/01 to 3/27/01	3 ^d	779	0-450	Spinner logging only	
	3/30/01	3	779	0-459	Includes Idronaut hydrochemistry tool ^f	

Table 4.1-3 **Geophysical Logging Conducted in Phase II Boreholes/Wells**

NOTES: ^a "NC-EWDP-" is the official prefix of all new Nye County wells. ^bLogged inside drill pipe or casing (cased log) generally includes natural gamma, density (gamma/gamma), neutron moisture, temperature, and deviation logs.

^c Logged in open borehole (open hole logs) generally includes logs in footnote b and normal, lateral, and single point resistivity, natural gamma, spontaneous potential, temperature, fluid resistivity, and caliper logs. ^dNot a complete suite of logs for type; see comments column.

^eLogged inside well casing (completion log) generally includes natural gamma, density (gamma/gamma), and temperature logs.

^f Idronaut hydrochemistry tool includes: salinity, conductivity, pressure, oxygen saturation, redox, oxygen concentration, pH, temperature.

Well	Horizontal Permeability (m ²)	Transmissivity (m²/d)	Storativity	No. of Boundaries Inferred	Distance to Boundaries (m)
NC-EWDP-1S	3 x 10 ⁻¹⁰	7,330	N/A	2	30
NC-EWDP-3D	1.34 x 10 ⁻¹¹	900	N/A	0	N/A
NC-EWDP-3S	4.3 x 10 ⁻¹⁴	4.2	N/A	0	N/A
NC-EWDP-3D Interference	6.2 x 10 ⁻¹⁴	6.0	13	0	N/A
NC-EWDP-7SC	3.3 x 10 ⁻¹²	67	N/A	0	N/A
NC-EWDP-7S Interference	7 x 10 ⁻¹²	145	0.026	0	N/A
NC-EWDP-9SX	4 x 10 ⁻¹¹ to 7.5 x 10 ⁻¹¹	1,860 to 3,600	N/A	2 or 3	600 to 900
NC-EWDP-19D	2.3 x 10 ⁻¹²	372	N/A	2	200
Aeropark AD-2	N/A	266	N/A	0	N/A
Garlic Interference	N/A	196	0.00022	0	N/A
BGMW #13	N/A	307	N/A	2	30 to 60

Table 4.1-4Summary of Early Warning Drilling Program Well Test Interpretations

NOTE: N/A = not applicable

Table 4.1-5 List of Analytes Measured in Water Samples, Laboratories Used, and Methods Used

Analyte	Laboratory	Method
Gross chemistry: chloride, sulfate, bromide, calcium, magnesium, sodium, potassium, bicarbonate, nitrate, phosphate, dissolved silica	Desert Research InstituteWater Resource Center	Greenberg et al. (1992)
Electrode/probe measurements: iodide, fluoride, pH, specific conductivity	Desert Research InstituteWater Resource Center	Skougstad et al. (1985)
Trace elements	Desert Research InstituteWater Resource Center	EPA (1994)
Tritium	Desert Research InstituteWater Resource Center	Krieger and Whitaker (1980)
Gross alpha	Barringer Laboratories (Golden, Colorado)	EPA method 900.0 (Krieger and Whitaker, 1980)
Gross beta	Barringer Laboratories (Golden, Colorado)	EPA method 900.0 (Krieger and Whitaker, 1980)
Uranium activities	Barringer Laboratories (Golden, Colorado)	EPA method 908.0M (Krieger and Whitaker, 1980)
Thorium activities	Barringer Laboratories (Golden, Colorado)	USAEC RMO 3008, unpublished Barringer Laboratories internal procedure
Tritium	Barringer Laboratories (Golden, Colorado)	EPA method 906.0 (Krieger and Whitaker, 1980)
Radium-222	Barringer Laboratories (Golden, Colorado)	SM7500Ra-BM (Clesceri et al., 1996)
Radiocarbon	Institute of Geological and Nuclear Sciences (New Zealand)	Taylor, C.B.; Trompetter, V.J.; Brown, L.J.; and G. Bekesi. In press. "Hydrogeology of the Manawatu aquifers, North Island, New Zealand: clarification using a multi-disciplinary environmental tracer approach." <i>J. Hydrology.</i>
Tritium	Institute of Geological and Nuclear Sciences (New Zealand)	Wolf et al. (1981)
Total dissolved inorganic carbon	Institute of Geological and Nuclear Sciences (New Zealand)	Taylor and Fox (1996)
Stable isotopic ratio analyses (SIRA): carbon (del 13C), oxygen (del 18O), hydrogen (del D)	Institute of Geological and Nuclear Sciences (New Zealand) and Geochron Laboratories (Cambridge, Massachusetts)	McCrea (1950); O'Neil and Epstein (1966); Craig (1961)
Stable isotopic ratio analyses (SIRA): nitrogen (del 15N)	Geochron Laboratories (Cambridge, Massachusetts)	Pang and Nriagu (1977)
Stable isotopic ratio analyses (SIRA): sulfur (del 34S)	Geochron Laboratories (Cambridge, Massachusetts)	Thode et al. (1961)
Unstable isotopic ratios: strontium isotopic ratios, uranium isotopic ratios, lead isotopic ratios	Geochron Laboratories (Cambridge, Massachusetts)/Massachusetts Institute of Technology	Bowring, unpublished internal laboratory procedures; Huh et al. (1998); Sherrell et al. (2000)
Chlorine-36 isotopic ratio	University of Arizona/Purdue Rare Isotope Measurement Facility	Bentley et al. (1986)

Table 4.1-6

Average Concentrations of Selected Constituents from Shallowest Zones (well screens) in Boreholes Aligned along an Approximately East-West Transect from NC-EWDP-5SB in the East to NC-EWDP-1S in the West

		Average Concentration of Constituent				
Well ID	Rock Type	Fluoride (mg/L)	Strontium (µg/L)	Percent Modern Carbon	CI-36/CI (x 1X10 ¹⁵)	
NC-EWDP-5SB	Valley-fill alluvium	1.0	284	1.58	244	
NC-EWDP-4PB	Valley-fill alluvium	1.9	38	12.55	654	
NC-EWDP-4PA	Valley-fill alluvium	1.2	50	17.70	605	
NC-EWDP-19P	Valley-fill alluvium	1.8	64	17.77	425	
NC-EWDP-15P	Valley-fill alluvium	1.8	57	8.19	493	
NC-EWDP-3S	Tertiary volcanics	2.6	4	17.00	245	
NC-EWDP-7S	Valley-fill alluvium	0.8	683	6.50	nd	
NC-EWDP-9SX	Valley-fill alluvium	1.8	143	9.36	313	
NC-EWDP-12PA	Mud flow tuff and ash, tuffaceous sandstones, pyroclastic flows	3.3	346	2.60	343	
NC-EWDP-12PB	Tuffaceous sandstones, conglomerate, tuff	3.2	320	2.87	314	
NC-EWDP-12PC	Valley-fill alluvium	1.0	506	5.43	370	
NC-EWDP-1S	Tertiary volcanics	0.5	594	5.21	349	

NOTE: nd = not determined yet

Table 4.1-7
Summary of Water Level Monitoring in Early Warning Drilling Program
Wells and Boreholes

Well No. (NC-EWDP-) ^a	Methods	Frequency	Duration
1DX	Manual	Weekly/Monthly	5/99 to Present
1S	Transducers/Datalogger	Semi-continuous	3/99 to Present
2D	Manual	N/A ^b	1/99
3D	Manual	Weekly/Monthly	1/99 to Present
3S	Transducers/Datalogger	Semi-continuous	3/99 to Present
5S ^c	Manual	Weekly/Monthly	3/99 to 4/99
9SX	Transducers/Datalogger	Semi-continuous	1/99 to Present
Washburn-1X	Manual	Weekly/Monthly ^d	12/98 to Present
2DB	Manual	Weekly/Monthly	10/00 to Present
4PA	Manual	Weekly/Monthly ^d	1/00 to Present
4PB	Manual	Weekly/Monthly ^d	1/00 to Present
5SB	Manual	Weekly/Monthly	2/00 to Present
7S	Manual	Weekly/Monthly	2/00 to Present
7SC	Transducers/Datalogger	Semi-continuous	4/01 to Present
12PA	Manual	Weekly/Monthly	3/00 to Present
12PB	Manual	Weekly/Monthly	3/00 to Present
12PC	Manual	Weekly/Monthly	4/00 to Present
15P	Manual	Weekly/Monthly ^d	3/00 to Present
19P	Manual	Weekly/Monthly ^d	3/00 to Present
19D	Manual	Periodic ^d	4/00 to Present
3DB, 12D, 15D ^e			

NOTES: ^a Prefix for all Early Warning Drilling Program wells.

 $^{\rm b}$ Borehole cannot be sounded; no depth to water is available; N/A = not applicable.

^c Well plugged; data valid through 4/99.

^d Ancillary digital transducer/datalogger data available with U.S. Geological Survey Alluvial Testing Complex work.

^e Wells are not complete.

Name	Туре	Temperature (° C)	Flow (L/min.)	Depth (m)
McLeod 88 Spring	Spring	87.9	_	_
Pott's Ranch Hot Spring	Spring	45	125	_
Diana's Punch Bowl	Spring	59	_	_
Hot Well	Well	hot	_	_
Gene Sawver Well	Well	54	_	84.0
Gabbs Area	Well	47.8	_	66.0
Charnock (Big Blue) Springs	Spring	26.7	1,03	_
Big-Blue, Charnock Spring	Spring	32	_	_
Darrough's Well	Well	90.5	_	244.0
Darrough's North Spring	Spring	71.2	_	_
Warm Spring	Spring	warm	_	_
Stanley A. Tanner Well	Well	warm	_	_
Indian Springs	Spring	warm	_	_
Hall Mine Well (Anaconda)	Spring	27.7	_	_
Well	Well	28	_	_
Wells	Well	hot	_	_
Belmont Mine, 1,500 ft level	Well	37.2	_	457.0
Mosquito Ranch Springs	Spring	31.6	_	_
Spring	Spring	40	_	_
Test Hole UCE-10	Well	48	_	903.1
Spring	Spring	35	_	-
Old Dugan Place Hot Spring	Spring	36.1	_	-
Hot Creek Ranch Spring	Spring	62.8	2,888	_
Hot Creek Valley Spring	Spring	61.1	_	_
Warm Spring	Spring	26.1	19	_
Salisbury Spring	Spring	30	_	-
Spring	Spring	21	_	-
Upper? Mud Spring	Spring	25.5	-	—
Spring	Spring	25	_	—
Spring	Spring	29	_	—
Warm Springs	Spring	63	170	—
Spring	Spring	22	_	-
Spring	Spring	25	_	-
Duckwater Area	Spring	33.9	_	-
Big Spring	Spring	38	_	_
Blue Eagle Springs	Spring	29	7,030	_

 Table 5.1-1

 Low and Moderate Temperature Springs and Wells in Nye County

Nye County Nuclear Waste Repository Project Office Independent Scientific Investigations Program Final Report, Fiscal Years 1996–2001

Name	Туре	Temperature (° C)	Flow (L/min.)	Depth (m)
Moorman Spring	Spring	37	1,294	_
Flag Spring No. 3	Spring	22.8	_	_
Butterfield (Flag, Sunnyside) Springs	Spring	23.9	7,571	_
Hot Creek Ranch Springs	Spring	26.7	_	_
Moon River Springs	Spring	32.5	_	-
Bacon Flat 24-17 Oil Well	Well	113	_	1,653
Chimney Hot Springs	Spring	60	_	_
Spring	Spring	45	_	_
Spring	Spring	46	_	_
Cedar Spring	Spring	25	9	_
Climax Seep	Well	41.5	_	-
Tippipah Spring No. 2	Spring	22	_	_
Yucca Flat Test Well 84-69, TW-E	Well	42.2	_	572
Yucca Flat Well 79-69A, TW-C	Well	37.2	_	519
Sarcobatus Flat-Beatty Area	Well	22.2	_	_
Spring	Spring	21	_	_
Hicks (Burrell) Hot Springs	Spring	38	19	_
Beatty Mineral Springs	Spring	24.4	379	_
TW-F Well	Well	64	882.96	1,036
Well	Well	46	_	32
Cooks East Well	Well	32	_	91
Fairbanks Spring	Spring	27.2	_	-
Rodgers Springs	Spring	27.8	_	-
Longstreet Spring	Spring	27.8	_	-
Unnamed Spring	Spring	27	-	-
Scruggs Spring	Spring	30		-
Devils Hole	Spring	33		-
Point of Rock (King) Spring	Spring	32	4,399	-
Jack Rabbit Spring	Spring	28	-	-
Big, Ash Meadows, and Deep Springs	Spring	28	-	-
Crystal Spring	Spring	30	-	-
U.S. Geological Survey Tracer Well 2	Well	30.6	-	-
Cherry Patch Well	Well	27.5	_	66
Manse Ranch Springs	Spring	25	4,542	-
Pahrump Springs	Spring	25	1,840	-
Pahrump Community Church Well	Well	27	_	-

Source: Garside (1994)

NOTE: -= not applicable or not measured