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Abstract 

Amargosa Desert, Nevada regional groundwater studies show that the surface runoff 

infiltration occurring in the arroyos following runoff producing storms, and this infiltration is 

considered to be a major source of groundwater recharge. Groundwater infiltration through 

alluvium was investigated in the Amargosa Desert using borehole drill cuttings, groundwater 

chemistry, and applying a novel method for collecting runoff water. The sampling process 

included sediment, precipitation, and runoff water. In total, 176 runoff, 182 sediment, and 45 

precipitation samples were collected between January, 2009 and January, 2011.Water chemistry, 

chloride concentrations, and stable isotopes of water collected from specially designed runoff 

samplers, placed in the main ephemeral arroyo and its tributaries in the Amargosa Desert, closely 

match the chemistry of underlying groundwater where a plume of low chloride water underlies 

the arroyos until it connects with the Amargosa River. This evidence indicates that current and 

past infiltration of surface runoff (stormwater) is the primary source of the underlying 

groundwater plume. The results suggest that infiltration of surface runoff from large storm events 

in this region is a source of recharge more important that previously realized. Furthermore, the 

analyses of results indicate that the dominant processes and reactions responsible for the 

hydrochemical evolution in the Amargosa Desert water system are (1) evaporative concentration 

prior to infiltration, (2) carbonate equilibrium, (3) silicate weathering reactions, (4) limited 

mixing with saline water, (5) dissolution/precipitation of calcite, dolomite and fluorite, and (6) 

ion exchange. The results also indicate that the northern west face of Yucca Mountain 

groundwater is fresh water, Fortymile Wash groundwater is dilute, and the carbonate signature is 

shown in the Ash Meadows and Death Valley waters. Moreover, the results show three main 

groundwater signatures indicating groundwater evolution, potential flowpaths, and recharge 

areas. The flowpaths are the trace of the Amargosa River, the trace of Fortymile Wash, and its 

convergence with the Amargosa River. This appears to represent not just a groundwater flow 

path, but traces of surface runoff infiltration as well.   
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Chapter 1 

1. General Introduction 

Natural tributaries in arid regions are generally ephemeral and the flow occurs 

intermittently during short, isolated flow periods separated by longer periods of low or zero flow; 

sustained flow is rare and baseflow is essentially absent (Sharma and Murthy, 1996). Peak flow 

rates occur within a few hours of the start of a rise. The steep rise results from the nature of arid 

zone rainfall, i.e. afternoon and evening thunderstorms in the south-western U.S.A. (Osborn and 

Renard, 1970), low pressure monsoon depressions in the Indian arid zone (Sharma and Vangani, 

1982), large scale convective winter storms in Middle East (Jones, 1981) and tropical 

cyclones/troughs in Australia (Pilgrim et al., 1988), and sometimes from the steepness of the 

channels draining the well-defined runoff generating zones. Normally, large volumes of surface 

runoff water move into the ephemeral channel in a short period causing the flash flooding 

characteristic of arid zone drainage basins. Flash floods are usual hydrologic features of desert 

drainage. Drainage basins with high relief, a large percentage of land bedrock, sparse vegetation 

and shallow soils are particularly susceptible to flash flooding (Fisher and Minckley, 1978). 

Regularly, peak flow rates are reached almost immediately because the ephemeral flood wave 

forms a steep wave front, or the wall of water of legends, in its travel downstream (Jones, 1981; 

Pilgrim et al., 1988). Two mechanisms contribute to the formation of the wall of water of 

legends. First, rate of infiltration into the permeable dry streambed is highest at the wave front 

and decreases in the upstream direction, with the effect that the leading edge of the wave 

steepens as it moves downstream. Second, the deeper portion of the flood wave near the peak 

travels faster than the leading edge of the wave, with the result that the wave peak approaches the 
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front until the peak and front almost coincide and a shock front is formed (Sharma and Murthy, 

1996). 

Net infiltration is the penetration of water through the ground surface to a depth where it 

can no longer be withdrawn readily by evaporation or transpiration by plants (DOE-OCRWM, 

2006). Net infiltration in arid and semi-arid regions is usually estimated based on other variables 

rather than determined from direct measurement. While infiltration in arid and semi-arid climates 

is temporally and spatially variable due to intermittent precipitation that is sensitive to 

topography, long-term average net infiltration rates effectively measure the steady-state flow of 

water through the unsaturated zone (the zone of soil or rock below the ground surface and above 

the water table) (DOE-OCRWM, 2006). 

Run-off in desert environments is ephemeral and at Amargosa Desert occurs only as a 

transient response to precipitation events. When enough water falls to create run-off, it can be 

sudden and intense. The Great Basin desert is known for flash floods that start and end abruptly, 

carrying objects as large as boulders and cars when they do strike. During these events, large 

amounts of water can move rapidly away from upland areas. Run-on occurs when water from 

higher areas accumulates in lower areas, which creates the potential for localized increases in 

infiltration (DOE-OCRWM, 2006). 

Because nearly all water infiltrating into deep soils and thick alluvium (sedimentary 

material deposited by a stream or running water) in vegetated arid and semi-arid areas is 

retained, in such areas net infiltration below the root zone is thought to be generally negligible 

(DOE-OCRWM, 2006). Thick alluvium effectively redistributes water and encourages the 

establishment of deep root zones. The combined effect of redistribution and water uptake by 

deep-rooted plants prevents water from becoming net infiltration (DOE-OCRWM, 2006). 



 3

Evapotranspiration consists of the water returned to the atmosphere by direct evaporation 

and transpiration (e.g., the water used by plants). It is a complex process and depends on factors 

such as solar radiation, air and soil temperatures, soil moisture content, air turbulence (e.g., 

wind), and the types and density of vegetation (e.g., amount of canopy cover, rooting depths, and 

leaf structure) (DOE-OCRWM, 2006). Important aspects of the water cycle processes at 

Amargosa Desert include the temporal and spatial distribution of precipitation, run-off and run-

on, redistribution, and evapotranspiration. Water movement through the unsaturated zone at 

Amargosa Desert is thought to be mainly vertical, and evaporative losses below the root zone are 

insignificant (DOE-OCRWM, 2006). 

In the period (2001-2005), the U.S. Department of the Interior and U.S. Geological 

Survey (SNL, 2008) estimated the total annual precipitation in the Amargosa Desert area in the 

range 3.5-178 mm/yr and by an average of 130 mm/yr; changes in soil moisture were recorded in 

early August 2005 to a depth of at least 2.75 m at the devegetated native soil site and 1.25 m at 

the vegetated native soil site and this is the deepest downward percolation of soil moisture 

documented at Amargosa Desert since 1983 (SNL, 2008; Johnson et al., 2007); recorded annual 

evapotranspiration was in the range of 48-233 mm/yr by an average of 157 mm/yr (SNL, 2008; 

Johnson et al., 2007). Woolhiser (2006) estimated the runoff rate in the vicinity of Amargosa 

Desert in the range of 0.38-3.59 mm/yr. Furthermore, SNL (2008) estimated the alluvium 

thickness in the Amargosa Desert vicinity in the range of 0.3 m in the mountains and greater than 

20 m in the valley. 

Many literature accounts of desert flash floods confirm that suspended alluvial 

concentrations in this kind of environment are amongst the highest recorded, despite human 

settlements that induced changes in land use and cover (Stewart and LaMarche, 1967; Inbar, 
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1992). Furthermore, redistribution and mobilization of such large amounts of alluvial materials 

the majority sediments amount of it fine-grained, helps explain the importance of mudstones in 

ancient desert rock sequences (Alexandrov Y., et. al., 2007). In addition to the high sediment 

yield, flash floods in arid regions ensure a short half-life for reservoirs that are fed in part or in 

total by ephemeral channels (Alexandrov Y., et. al., 2007), enhancement wind-blown dust in 

endorheic basins through raising sediment loads in these areas, provides a relation between 

suspended sediment concentration and water discharge (Forstick et al., 1983), and decrease in  

the soil layer thickness on mountains and hills to increase its thickness down-gradient through 

the runoff process which considered a type of mechanical weathering and a sedimentary carrier, 

and then it could affect the infiltration process.  

Fisher and Minckley 1978 described the change in selected chemical parameters during a 

single flash flooding event on Sycamore Creek, Arizona. Although floods are often viewed as 

dilution phenomena in terms of dissolved substances, in which low conductivity rainwater 

dilutes groundwater or spring water that are nearer chemical equilibrium with substrates, and 

thus rich in dissolved salts. They observed that the dilution effects are partially offset by 

increased leaching and dissolution of solutes from newly exposed rock and soil minerals as well 

as from suspended particles. However, they noted that the major anion, bicarbonate, and 

conductivity, followed a dilution pattern. In the other hand, nitrate, phosphate and iron varied 

widely through the cycle, and generally increased over levels recorded at base flow. They 

attributed the increased concentrations of nitrate as discharged increased to leaching from the 

ephemeral stream beds and surrounding lands, and suggested that surface runoff contributed few 

nitrates to streams but yielded significant amounts of phosphate shifted to release from high 

concentrations of particles in the water. 
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The chemistry of precipitation evolves as it falls from the sky, contacts the earth’s 

surface, and makes its way into the groundwater. Sampling of surface runoff in a desert 

environment from ephemeral arroyos is complicated by a number of practical concerns. Surface 

runoff events are uncommon, sometimes separated by gaps of more than a year, and difficult to 

forecast in advance. One is forced either to place potentially expensive equipment in the field for 

extensive time periods or to have a large supply of workers ready to be called into the field for 

each potential storm. In the absence of very large sources of funding, any desert arroyo surface 

runoff system requires compromises. 

Accurate estimates of groundwater recharge are necessary to understanding the long-term 

sustainability of groundwater resources and predictions of groundwater flow rates and directions. 

Therefore, as an arid region, the surface runoff water could be a major source of groundwater 

recharge and then the powerful transporter of the contaminants to the vadose zone (unsaturated 

zone). The present study attempts to provide a new insight into the chemical evolution of 

southern Nevada’s groundwater and its potential flow paths and rates during the infiltration and 

surface runoff processes, through initiating a surface runoff sampling network to track the 

chemical footprint of the surface runoff water on the groundwater recharging and infiltration 

chemistry, by collecting a baseline data on a comprehensive suite of chemical parameters, which 

included the major ion chemistry, nutrients, trace elements, as well as the stable isotope ratios 

and the resources available at Nye County Nuclear Waste Repository Project Office (NWRPO). 

Multiple analytical methods were created to analyses these data to development a defensible 

groundwater chemistry monitoring network, in the Amargosa Desert, suitable for long-term 

performance confirmation monitoring, which is the overall goal of this study. 
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Water flux densities are often measured indirectly (for example with water balance 

methods, water content-water storage change methods, tracer methods, etc.) and are often 

predicted with notable uncertainties. Exact information about the soil water balance is needed to 

quantify solute transfer within the vadose (unsaturated) zone. Different methods exist for 

measuring water and solute flux in and below the root zone and have been critically reviewed 

(Fuehr et. al., 1998; Meissner et. al., 2000). In the last several years, researchers are diligently 

developing a device for collecting water from the pore spaces of soils and for determining the 

soluble constituents removed in the drainage. A lysimeter (Figure 1.1) is a device for measuring 

water percolation through soil, something like a "flower pot" that is buried and filled with soil, 

measuring water and solute balance, measuring movement of water and chemicals in the 

unsaturated and saturated zone of the soil, and aiding clarification of differences and similarities 

between experimental results obtained in the laboratory and the field and for combining data 

systematically.  

Many researchers (Migliaccio et al., 2009; Takamatsu et al., 2007; Meissner et al., 2000, 

2002, 2004) designed different types of lysimeters for soil water sampling to investigate the 

behavior of solutes in soil, measure water and solute balance, and investigate of water, gas, and 

solute transport in soils. The limitations and the problems of using different types of lysimeters 

are: (1) the fluids could only be gathered under saturated gravity flow; (2) samplers materials 

could interfere with the super sensitive chemical analyses; (3) it is generally expensive; (4) and 

may not be practical for unusual soil types and unusual research objectives such as capturing 

total leached volumes, hydraulic discontinuity, and sometimes artificial sidewall flow. 
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This study included precipitation, runoff, soil chemistry, and groundwater chemistry in 

the Amargosa Desert. The field and experimental work collected the required chemical data for 

precipitation, runoff, and sediment analysis. The groundwater chemistry and isotope data 

administered by the Independent Scientific Investigation Program (ISIP) that contains data from 

more than 200 wells that encompass the entire region. New methods were developed to control 

the construction and emplacement of surface runoff samplers in addition to the collection, field 

testing, and handling of precipitation, runoff, and sediment samples from the time the samples 

are gathered at the location until they are ready to be sent to the laboratory for chemical analysis. 

Different analytical methods, mapping, and modeling techniques were performed on these four 

sections to proof the hypothesis of this research, which has been proofed, “The long term 

monitoring of the chemical analysis of surface runoff can provide a unique insight into the 

processes controlling the groundwater recharge and the sustainable yield of groundwater in the 

Amargosa Desert Region”. The water ion chemistry, stable isotopic composition and statistical 

analyses of these various kinds of water samples from the Amargosa Desert show similarity 

between the surface water and underlying groundwater. This provides an important evidence for 

that current and past infiltration of surface runoff (stormwater) is the primary source of the 

underlying groundwater reservoir and that infiltration of surface runoff from large storm events 

in this region is a source of recharge more important that previously realized. 

This study covers groundwater recharge from the surface runoff and infiltration in arid 

environments.  The dissertation presented noval methods and results in identifying interaction of 

surface runoffs and infiltration with groundwater, groundwater flow patterns, groundwater 

recharge and geochemical evolution around Fortymile Wash near Yucca Mountain.  Chapters 2 

through 6 were covered specific issues: identification of probable groundwater paths in the 
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Amargosa Desert Vicinity, groundwater recharge in the Amargosa Desert using surface-runoff 

chemistry, and groundwater recharge in southern Nevada.  
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ABSTRACT  

Groundwater geochemical data from the Amargosa Desert region were analyzed to better 

understand the general flow system, geochemical evolution and recharge patterns around 

Fortymile Wash near Yucca Mountain, Nevada. Major ion chemistry, silica, fluoride and 

associated saturation indices, determined with PHREEQC, were examined sequentially using the 

multivariate statistical methods of principal component factor analysis and k-means cluster 

analysis. Analysis of both major ion data concentrations and their saturation indices allows 

simultaneous consideration of arithmetic (raw concentrations) and logarithmic (saturation 

indices) variables that describe the hydrochemical system and therefore can provide further 

insight into the system’s behavior. The factor analysis of the major ion and saturation indices 

transforms the variables into a tractable number of descriptive factors that are rotated to 

summarize the chemical groundwater system and better interpret system variation. Cluster 

analysis of the reduced hydrochemical system establishes distinct hydrochemical facies 

independently of the lithological data, but in good agreement with it. These analyses showed 
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several groundwater signatures or hydrochemical processes indicating groundwater evolution, 

potential flowpaths, and recharge areas such as the important one along Fortymile Wash.  

2.1 INTRODUCTION 

Geochemistry has contributed significantly to the understanding of groundwater systems 

over the last 50 years. Historic advances include development of the hydrochemical facies 

concept, application of equilibrium theory, investigation of redox processes, and radiocarbon 

dating (Glynn and Plummer, 2005). Other hydrochemical concepts, tools, and techniques have 

helped elucidate mechanisms of flow and transport in groundwater systems, and have helped 

unlock an archive of paleoenvironmental information. Hydro-chemical and isotopic information 

can be used to interpret the origin and mode of groundwater recharge, refine estimates of time 

scales of recharge and groundwater flow, decipher reactive processes, provide paleohydro-

logical information, and calibrate groundwater flow models (Glynn and Plummer, 2005). A 

thermodynamic perspective is offered that could facilitate the comparison and understanding of 

the multiple physical, chemical, and biological processes affecting groundwater systems. The 

chemical species of an element is important regarding its environmental chemistry. The species 

also give information on the mobility and therefore availability of the metal to living things and 

their potential toxicity (Fergusson, 1990).  

The conceptual hydrological model of the Yucca Mountain region has evolved as more 

data are gathered and understanding of the region increases (Flint et al., 2001). Several 

researchers (Eddebbarh et al., 2003; Winterle et al., 2003; Kelkar et al., 2003; Liu et al., 1995) 

have conducted mathematical modeling of the Yucca Mountain conceptual model at the site 

and/or regional scale, and base their confidence in modeling results by comparing calculated to 

observed hydraulic heads, estimated to measured infiltration rates, and comparing their results to 
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results obtained by other mathematical models. They present groundwater flow in the Amargosa 

Desert region, generally from areas of higher hydraulic head under the mountains to the north to 

the low hydraulic head regions in the south. 

Groundwater flow paths in the vicinity of Yucca Mountain were estimated from 

compositional variations in the aerial distribution of relatively nonreactive, naturally occurring 

tracers (Cl, SO4, and δ18O) in the volcanic and alluvial aquifers by Kwicklis et al. (2003). The 

flow paths estimated from this analysis were then used to develop inverse models that attempted 

to explain the chemical and isotopic composition of groundwater at selected down-gradient wells 

in terms of groundwater mixing and water/rock interactions. 

The work presented herein adds to the understanding of the general groundwater flow 

system, geochemical evolution and recharge patterns around Fortymile Wash near Yucca 

Mountain. Groundwater chemistry data used herein were obtained from the Nye County Nuclear 

Waste Repository Project Office (NWRPO) (NWRPO, 2003) and a Los Alamos National 

Laboratory report (LANL, 2003). 

2.2 DESCRIPTION OF THE STUDY AREA  

Yucca Mountain, north of the Amargosa Desert, Nevada, (Figure 2.1) is a group of north-

trending block-faulted ridges of volcanic rocks (ash-flow and ash-fall tuffs) (Kelkar et al., 2003). 

Amargosa Desert is located in the southern portion of Nye County within the Great Basin, and is 

part of the Death Valley groundwater basin. Fortymile Wash, an ephemeral drainage, originates 

in the uplands north of Yucca Mountain, flows southward along the east side of the mountain, 

and terminates in the northern part of the Amargosa Desert. Yucca Mountain has been chosen as 

the site of a high-level nuclear waste repository and is expected to hold approximately 77,000 

metric tons of radioactive waste.  
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2.3 METHODOLOGY 

2.3.1 Hydrochemical modeling 

The computer program PHREEQC is capable of describing a variety of geochemical 

processes in groundwater systems. The program was used to conduct simulations using a chosen 

set of dissolved species and mineral phases to describe oxidation-reduction (redox) reaction and 

thermodynamic equilibrium, including ion exchange, dissolution, and precipitation. PHREEQC 

was used to calculate thermodynamic equilibrium saturation indices for mineral species, based 

on major ions, temperature, pH, F- and SiO2. The saturation index (SI) is defined as the logarithm 

of the ratio of the ion activity product (IAP) of the component ions of the solid in solution to the 

solubility product (K) for the solid [SI=log IAP/K]. If the SI is zero, the water composition 

reflects the solubility equilibrium with respect to the mineral phase. A negative value indicates 

undersaturation and a positive value indicates supersaturation.  

When redox reactions occur between the atoms to form molecules or ions with polar 

covalent bonds, certain assumptions are required in order to maintain a consistent concept. 

Knowledge of valence and bonding theory serves as the key to correct the formulas of chemical 

species. In general, knowledge of electrostatics is applied to write formulas with elements and 

radicals that have a fixed valence (or oxidation state) like oxygen. The difficulty stems from 

elements that can assume several oxidation states like sulfur (most common oxidation numbers 

are +6, +4, +2, 0, and -2), from which a variety of ions, molecules, and radicals can result. Here 

the redox couple H2O/O2 is used for calculating initial pE values. 

Groundwater chemistry data for 210 sampling locations in the vicinity of Yucca 

Mountain were obtained from NWRPO and Los Alamos National Laboratory and compiled into 

a single database covering the Amargosa Desert region. These data were then input into 
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PHREEQC. The data included the major ions (Ca2+, Mg2+, Na+, K+, Cl-, SO4
2-, SiO2, F

-, and total 

alkalinity), in addition to pH, temperature and redox. 

2.3.2 Multivariate statistical methods 

The multivariate statistical methods applied herein are principal component factor 

analysis (PCFA) and k-means cluster analysis (CA). PCFA is a dimension reduction method and 

CA is a classification method.  

Factor analysis methods allow a reduction in the number of variables that describe system 

behavior and the identification of new, homogeneous subgroups that are easier to identify 

(Lawrence and Upchurch, 1982). PCFA uses linear combinations of the variables to form the 

factors. The linear combinations permit PCFA to retain as much as possible of the original data 

variation and spatial distribution in factor-space, and allows for the use of rotation schemes that 

better reveal similarities within variables or cases. The most common rotation is the normalized 

varimax rotation, which attempts to find the rotation that will maximize variability on the rotated 

axes while minimizing it everywhere else (Mellinger, 1987). A k-means CA attempts to 

minimize the variability within each cluster while maximizing the variability between clusters. 

The mean of a cluster, or centroid, has its components specified by the average of each variable 

in the analysis. The algorithm uses one initial observation per cluster as the mean for that cluster, 

and then evaluates each of the remaining observations for inclusion into a particular cluster. 

Using STATISTICATM8, a PCFA was performed on TDS and Cl- data along with the 

species near saturation data, obtained by applying PHREEQC to the major ion data, to reduce the 

number of variables to four. In addition, a rotation of the first four factors was conducted to find 

relationships among the original variables. From the rotated factors of the ion chemistry, factor 

scores were generated for each of the 210 sampling locations, thus producing a loading table 
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indicating the decomposition of each of the samples into the four rotated factors. Using the same 

statistical software, the factor scores from the rotated PCFA results were then evaluated with the 

k-means CA to cluster wells with a similar composition into eight separate sample groups, or 

chemical facies. The k-means CA variables evaluated are the four factor scores, and the 

observations are the factor scores for each sampling location.  

Rotated factor loadings for major ions and factor scores for each sampling location, 

grouped into hydrochemical facies, are presented on biplots. Biplots are simultaneous bivariate 

(factor loadings and factor scores) scatter plots that provide a visual picture of the relationships 

between and among different variables and observations. The biplots presented herein have two 

scales: one for factor scores of sampling locations (i.e., bottom and left) and the other for factor 

loadings of ions (i.e., top and right). Sampling locations are shown as symbols, and ions are 

shown as vectors with their end (i.e., arrow) located at the factor loading values for that ion. For 

illustration purposes, the scale for ions is arbitrarily selected since only their direction is of 

relevance to the factor scores, but the same scale is used for all ions. Each ion vector indicates 

the direction of increasing ion content in the samples, and their projection onto the factor axis is 

their contribution and correlation to that factor. 

Contour plots of the first resulting factor were overlaid on a DEM of the region to reveal 

groundwater signatures and potential flowpath (Figure 2.1). A contour plot of a factor would be 

equivalent to a contour plot of a hydrochemical process delineating its areas of influence 

(Lawrence and Upchurch, 1982) and indicating the direction of evolution of that process 

(perpendicular to the contour).  
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2.4 RESULTS AND DISCUSSION 

2.4.1 Ionic strength 

The groundwater’s ionic strength ranges between 2.26E-03and 1.44E-02 (mean 5.3E-03) 

(Table 2.1). According to Appelo and Postma (1999), the ionic strength for freshwater is 

normally less than 0.02 while seawater has ionic strength of about 0.7. Also Deutsch (1997) 

reported that the ionic strength of most dilute groundwater is in the range of 10-2 to 10-3. The 

values of the ionic strength here show that the groundwater samples from Yucca Mountain area 

are fresh.  

Table 2.1: Ionic Strength for the Chemical Species in Yucca Mountain Region. 

 Ionic Strength 
Minimum Value 0.0023 
Maximum Value 0.0144 
Mean 0.0053 
St.dev 0.0028 

  

In addition, it has been noted (Deutsch, 1997) that the higher the ionic strength, the 

greater the solubility of the mineral in contact. Thus, the ionic strength results herein indicate 

that dissolved species in the Yucca Mountain region are very soluble and mobile.  

2.4.2 Chemical speciation and saturation indices 

Carbon (IV): the major ionic species of C (IV) in the Yucca Mountain ground water is 

HCO3
-, representing between 82 to 97% of all C (IV) species, by mean concentration of 2.74E-

03 molal. The ions CO2, CaHCO3
+ and CO3

2-, represent between 1 and 18, 0.2 to 1.4 and 0.07 to 

0.6 %. 



 20

Calcium: the dominant dissolved Ca species in the area is Ca2+, comprising between 72 

and 97% of all the species with mean concentration of 2.95E-04 molal; whereas the species 

CaSO4, CaHCO3
+ and CaCO3 are in the ranges 1.8 to 23, 1.2 to 4 and 0 to 3.4%. 

Chloride: chloride is of primary concern in any geochemical analysis because it is a 

highly nonreactive tracer, nonvolatile, and hydrologically mobile. There are no expected sources 

or sinks of chloride ions which is an advantage for understanding the flow system. 100% of Cl is 

in the ionic form of Cl- with mean concentration of 5.56E-04 molal. 

Fluoride: The ionic form F- by mean concentration of 1.51E-04 molal represents more 

than 97% of F, but less than 2.5, 0.8 and 0.4% of MgF+, CaF+ and NaF, exist.  

Potassium: K+ is the main ionic species constituting 78% of the total K in the area by 

mean concentration of 1.01E-04 molal. The KSO4
- species represent less than 0.8%. 

Magnesium: the Mg species in the groundwater are Mg2+ from 78 to 96% with mean 

concentration of 7.18E-05 molal, MgSO4 from 2 to 15%, MgHCO3
+ from 1 to 4%, MgCO3 from 

0.2 to 3%, MgF+ from 0.05 to 2 and MgOH+ from 0 to 0.4%. 

Sodium: in all the groundwater data, Na+ constitutes the major ionic species ranging 

between 99 and 100% with mean concentration of 3.46E-03 molal. The minor species include 

NaSO4
- from 0.06 to 0.6%, NaHCO3 from 0.06 to 0.2 % and NaCO3

- from 0 to 0.1%. 

Sulfur: the major ionic species of S6+ is in the form SO4
2- ranging from 86 to 99% by 

mean concentration of 4.11E-04 molal, CaSO4 from 0.9 to 8%, NaSO4
- from 0.06 to 5% and 

MgSO4 from 0 to 2%. 

Silicate: the Si species in the groundwater are H4SiO4 from 71 to 99% with mean 

concentration of 7.77E-04 molal and MgSO4 from 0 to 0.1%. 
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The speciation calculation indicates that the elements Ca, Cl, F, K, Mg and Na are 

distributed more than 90% as free ion species in all the analyzed groundwater samples. And for 

the elements C4+, S6+ and Si the dominant species were HCO3
-, SO4

2- and H4SiO4 by more than 

90%. 

The Na–Cl relationship has often been used to identify the mechanisms for acquiring 

salinity and saline intrusions in semi-arid regions. The low concentration of Na+ and Cl− in 

groundwater suggests that the dissolution of halite is not important in regulating the 

concentration of Na+ in groundwater and that there are other sources of Na+ and Cl−.  

Table 2.2 indicates that the groundwater in the area is near saturation with respect to 

aragonite (CaCO3), calcite (CaCO3), chalcedony (SiO2), dolomite (CaMg(CO3)2), fluorite (CaF2), 

sepiolite (d) (Mg2Si3O7(OH)5.3H2O) and amorphous silicate (SiO2). Of the wells, 58, 4, 7, 27 

and 4%, were oversaturated with respect to talc (Mg3Si4O10(OH)2), Chrysotile (Mg3Si2O5(OH)4), 

dolomite, quartz (SiO2), and sepiolite (d).  

Table 2.2: Chemical Species Saturation Indices in Yucca Mountain Region. 

Species Minimum value Maximum value Mean Near saturation (%) Over saturation (%) 
Anhydrite -5.12 -1.68 -2.7 0 0 
Aragonite -1.99 0.94 -0.17 76 0 
Calcite -1.85 1.08 -0.03 78 0.5 
Chalcedony -0.55 1.03 0.43 61 0.5 
Chrysotile -11.6 5.83 -3.2 8 4 
Dolomite -4.18 2.31 -0.6 40 7 
Fluorite -3.45 0.19 -1.1 16 0 
Gypsum -4.93 -1.46 -2.5 0 0 
Halite -8.33 -6.44 -7.5 0 0 
Quartz -0.16 1.47 0.85 6 27 
Sepiolite -7.25 3.73 -1.75 15 4 
Sepiolite(d) -10.1 0.66 -4.7 1 0 
SiO2(a) -1.35 0.19 -0.39 78 0 
Talc -7.11 9.97 1.33 12 58 
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Reactions among aqueous species that occur within the same oxidation state of the 

elements involved (e.g. CO2/HCO3
-/CO3

2-; SO4
2-/HSO4

-) are rapid and equilibrium can be 

assumed; in contrast, equilibrium is usually not attained between aqueous species with differing 

oxidation states (e.g., SO4
2-/HS-, HCO3

-/CH4). A small number of minerals, usually of relatively 

high solubility, appear to behave reversibly in natural systems (e.g., calcite, gypsum, halite, and 

fluorite); most other minerals (primary silicates) do not react completely to equilibrium but can 

still have an important effect on natural-water chemistry. Some weathering products of primary 

silicates tend to react to equilibrium, but kinetic processes are important in the formation of 

complex siliceous clay minerals (Glynn and Plummer, 2005). 

Groundwater systems were recognized early on as partial equilibrium systems (Lawrence 

and Upchurch, 1982); that is, where some reactions respond reversibly while driven by one or 

more irreversible reactions (e.g., oxidation of organic carbon driving sulfate reduction, and/or 

carbonate mineral reactions; dissolution of anyhydrite driving dedolo-mitization; dissolution of 

primary silicates driving the formation of clays and cementation with calcite and silica). These 

reactions are important in understanding geochemical evolution of groundwater systems, and can 

affect the hydrologic properties of aquifer systems. Some natural waters that appear to be at or 

near equilibrium with a given mineral phase, according to speciation calculations, may in fact be 

undergoing significant dissolution/precipitation of the mineral as a result of other irreversible 

reactions. 

2.4.3 Multivariate statistical methods 

Rotated factor loading distributions for each variable are presented in Table 2.3, along 

with the amount of total proportional variation explained by each rotated factor; high loading 

indicates a high degree of correlation. Factor 1 explains 25.6% of the variation and is dominated 
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by anhydrate, gypsum and fluorite, whereas Factor 2 explains 35.6% of the variation and is 

primarily composed of chrysotile, talc, sepiolite, dolomite and calcite. The first two rotated 

factors represented about 61% of the variation, whereas the remaining two explain nearly 40% of 

the variation with dominant species of amorphous silicate in the third factor and chloride in the 

fourth factor. In total, the first four factors explain 93.0% of the system's variations, implying a 

loss of only slightly more than 4%. 

Table 2.3: Rotated Factor Loadings for TDS, Cl- and SI 

Parameter Factor1 Factor2 Factor3 Factor4 
Chloride 0.276 0.017 0.040 0.912 
TDS 0.437 0.215 0.002 0.784 
Anhydrite 0.910 0.147 0.075 0.304 
Calcite 0.486 0.785 -0.172 0.165 
Chrysotile -0.013 0.994 -0.002 0.041 
Dolomite 0.493 0.814 -0.117 0.239 
Fluorite 0.768 0.013 -0.006 0.293 
Gypsum 0.908 0.152 0.087 0.306 
Halite 0.269 0.097 -0.055 0.939 
Sepiolite 0.043 0.964 0.233 0.061 
SiO2(a) 0.079 0.112 0.987 -0.007 
Talc -0.005 0.984 0.147 0.035 
Variation 3.070 4.278 1.111 2.69 
Percentage 25.6% 35.6% 9.3% 22.4% 
High factor loadings on variables are presented in red bold. 

The factor scores from the rotated PCFA results were evaluated with k-means CA to 

group sampling locations with a similar genesis into eight groups, or hydrochemical facies; 

results are presented in biplot Figures 2.2, 2.3, 2.4, 2.5 and 2.6. 

Figure 2.2 can roughly be interpreted as the separation of samples into Ca2+ on one end 

by 26% and Mg2+ on the other by 36%. Figures 2.3 and 2.4 can be interpreted as the separation 

of samples into Ca2+ on one end by 26% and SiO2 (a) and Cl- on the other by 9% and 22%, 
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2.5 CONCLUSIONS 

Groundwater ionic strength results of the Amargosa desert region indicate greater 

solubility and mobility of the dissolved species, in addition to the good water quality. Where 

elements Ca, Cl, F, K, Mg and Na are distributed as free ion species and HCO3
-, SO4

2- and 

H4SiO4 are the dominant species of the elements C4+, S6+ and Si by more than 90%, in all the 

analyzed samples. 

The low concentration of Na+ and Cl- in groundwater suggests that the dissolution of 

halite is not important in regulating the concentration of Na+ in groundwater and that there are 

other sources of Na+ and Cl-. 

Groundwater saturation indices indicate that the area is near saturation with respect to 

aragonite, calcite, chalcedony, dolomite, fluorite, sepiolite and amorphous silicate. Of the 

sampling locations, 58, 4, 7, 27 and 4% were oversaturated with respect to talc, chrysotile, 

dolomite, quartz and sepiolite, respectively.  

In the factor analysis, the variance of Factor 1 is dominated by anhydrate, gypsum and 

fluorite by 26%, whereas factor 2 explains 35.6% of the variance and is primarily composed of 

calcite, chrysotile, dolomite, sepiolite and talc. The first two rotated factors represented about 

61% of the variation, whereas the remaining two explain nearly 40% of the variation with 

dominant species of amorphous silicate in the third factor and chloride in the fourth factor. The 

k-means CA produced eight groups, which are presented on biplot to separate the samples into 

four basic factors of which the factor containing Ca2+, Mg2+, SiO2(a), Cl-; Mg2+ is the most 

dominant factor. The previous analyses indicate that the dominant processes and reactions 

responsible for hydrochemical evolution of the system differ by location and include: carbonate 
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equilibrium, silicate weathering reactions, evaporative concentration, and dissolution of calcite, 

dolomite, and fluorite.  

The biplots are diagram customized to the dominant hydrochemical processes (i.e., the 

factors), showing the hydrochemical facies and demonstrating the chemical composition of the 

processes and facies of the system. The spatial plots of factor-score contours delineate areas 

influenced by a hydrochemical process and indicate the direction of evolution of that process 

(perpendicular to the contour); they allow the exposition of hydrochemical signatures indicating 

ground water flowpaths and their interaction with the geologic context. Together, factor-score 

contours and hydrochemical facies indicate the five potential ground water flowpaths or 

signatures presented in Figure 2.1. 
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ABSTRACT  

In this study, the hydrogeochemical program PHREEQC was used to determine the 

chemical speciation and mineral saturation indices (SIs) of groundwater in the vicinity of the 

proposed high-level nuclear waste repository at Yucca Mountain, Nevada (USA). In turn, these 

data were used to interpret the origin and recharge mode of groundwater, to elucidate the 

mechanisms of flow and transport, and to determine potential sources of groundwater 

contamination. PHREEQC was run to determine aqueous dissolved species and minerals that 

would be in equilibrium with the study area’s groundwater. Selected major ions, associated SI, F- 

and Ca/Na ion exchange were then examined using the multivariate statistical methods of 

principal component factor analysis and k-means cluster analysis. Analysis of dissolved ion 

concentrations, SIs, and Ca/Na ion exchange allows simultaneous consideration of arithmetic 
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(raw concentrations) and logarithmic (SI, ion exchange) variables that describe the 

hydrochemical system and, therefore, can provide further insight into the system’s behavior. The 

analysis indicates that the dominant processes and reactions responsible for the hydrochemical 

evolution in the system are (1) evaporative concentration prior to infiltration, (2) carbonate 

equilibrium, (3) silicate weathering reactions, (4) limited mixing with saline water, (5) 

dissolution/precipitation of calcite, dolomite and fluorite, and (6) ion exchange. Principal 

component factor analysis and k-means cluster analysis of factor scores allow the reduction of 

dimensions describing the system and the identification of hydrogeochemical facies and the 

processes that defined and govern their evolution. 

Statistical analysis results indicate that the northern west face and southern Yucca 

Mountain groundwater is fresh water with low concentrations of Ca2+, Mg2+, Cl-, Ca2+/(Na+)2, 

and CaF2. The Fortymile Wash groundwater is dilute. The carbonate signature is shown in the 

Ash Meadows and Death Valley waters with high fluorite SI. Finally, the Crater Flat, Stripped 

Hills, and Skeleton Hills are dominated by Ca/Na ion exchange, Mg and Ca. The hydrochemical 

and statistical analyses showed three main groundwater signatures or hydrochemical processes 

indicating groundwater evolution, potential flowpaths, and recharge areas. The flowpaths are the 

trace of the Amargosa River, the trace of Fortymile Wash, and its convergence with the 

Amargosa River. This appears to represent not just a groundwater flow path, but traces of surface 

runoff infiltration as well.  

3.1 INTRODUCTION 

The proposed nuclear repository inside Yucca Mountain, Nevada (USA), was to be built 

between 201 and 427 m below the mountain’s surface and between 174 and 366 m above the 

water table, and would hold around 70,000 tons of spent nuclear fuel and high-level radioactive 
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waste (OSTI, 2000). To protect people and the environment, the design of the repository depends 

on natural and engineered barriers to isolate the nuclear waste and keep it dry as long as possible. 

Since groundwater beneath Yucca Mountain is directly upgradient from populated areas in the 

Amargosa Desert, an analysis of groundwater geochemical data in this region is important. 

Furthermore, better understanding the general flow system around Yucca Mountain may provide 

further insight into its behavior. Improved understanding of groundwater recharge and 

movement, with or without the repository, is essential for management of groundwater resources 

in southern Nevada. Variations in groundwater mineral speciation chemistry in the Yucca 

Mountain region could affect the processes associated with the potential transport of 

radionuclides (such as 229Th; 240Pu; 239Pu; 238Pu; 232U; 233U; 241Am; 243Am; 237Np; 210Pb; 206Pb; 

208Pb; 227Ac; 99Tc; 40K; and 14C) from the proposed repository to the accessible environment.  

The conceptual hydrological model of the Yucca Mountain region has evolved as more 

data have been gathered and understanding of the region has increased (Flint et al., 2001). The 

conceptual model of Yucca Mountain groundwater flow paths relies upon the argument that, in 

the absence of downgradient recharge or groundwater mixing, the composition of nonreactive 

species in the groundwater should remain constant along a flow path. Therefore, groundwater in 

an area with a given nonreactive species composition does not flow toward an area where the 

nonreactive species composition is different, whereas groundwater flow between areas with 

similar nonreactive species compositions is possible (Kwicklis et al., 2003). Several researchers 

(e.g., Eddebbarh et al., 2003; Winterle et al., 2003; Kelkar et al., 2003; Liu et al., 1995) have 

developed mathematical models of the Yucca Mountain conceptual model at the site and/or 

regional scale. Confidence in modeling results is based on comparisons of calculated and 

observed hydraulic heads, estimated and measured infiltration rates, and similarity to results 
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obtained by other mathematical models. Groundwater flow in the Amargosa Desert region is 

generally from areas of higher hydraulic head under the mountains to the north to the low 

hydraulic head regions in the south.  

Groundwater flow paths in the vicinity of Yucca Mountain were estimated from 

compositional variations in the areal distribution of relatively nonreactive, naturally occurring 

tracers (Cl, SO4, and δ18O) in the volcanic and alluvial aquifers by Kwicklis et al. (2003). The 

identification of these pathways is important for understanding the extent to which the saturated 

zone can delay human exposure to any radionuclides that might someday be mobilized from the 

Yucca Mountain repository. The flow paths estimated from this analysis were then used to 

develop inverse models that attempted to explain the chemical and isotopic composition of 

groundwater at selected downgradient wells in terms of groundwater mixing and water/rock 

interaction. Bushman et al. (2010) studied groundwater sources at Ash Meadows, a site of major 

groundwater discharge in the Mojave Desert. Those authors applied cluster analysis techniques 

to characterize and sort similar waters to determine the potential groundwater flow paths. 

Bushman et al. (2010) concluded from isotopic tracers and solute balances that waters at Ash 

Meadows are derived from southward flow through volcanic terrains, parallel to the preferred 

permeability structure induced by active regional east–west extension. The authors suggested 

that carbonate aquifer systems in extensional terrains are more compartmentalized than 

previously appreciated and that anisotropy in fracture permeability is a key to 

compartmentalization and the control of flow directions. Woocay and Walton (2006, 2008) 

examined the region with multivariate statistical methods using major ion concentrations. They 

found flowpaths along fracture traces in some regions mixed with flow directly down the 

hydraulic gradient in alluvial areas.  
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In this paper, multivariate statistical methods of principal component factor analysis and 

k-means cluster analysis were used to examine major ion chemistry and saturation indices. 

Analysis of dissolved ion concentrations, saturation index (SI) values, and Ca/Na ion exchange 

allows simultaneous consideration of arithmetic variables (raw concentrations) and logarithmic 

variables (SIs) that describe the hydrochemical system and, therefore, can provide further insight 

into the system’s behavior. The factor analysis of the major ions and saturation indices 

transforms the variables into a tractable number of descriptive factors that are rotated to 

summarize the chemical groundwater system and better interpret system variation. Cluster 

analysis of the reduced hydrochemical system establishes distinct hydrochemical facies 

independently of the lithological data, but in good agreement with them. Results are presented as 

contours overlaid on a digital elevation model of the region, which provide an image of potential 

flowpaths, and on bivariate plots (biplots) that allow the simultaneous observation of variable 

and sample relationships based on established hydrochemical processes and facies. These 

analyses indicate that the dominant processes and reactions responsible for hydrochemical 

evolution of the system differ by location and include carbonate equilibrium, silicate weathering 

reactions, evaporative concentration, and dissolution of calcite, dolomite and fluorite. 

3.2 DESCRIPTION OF THE STUDY AREA  

The Amargosa Desert (Figure 3.1) is located in southern Nye County, Nevada, 

approximately 160 km northwest of Las Vegas, within the unique closed-basin, hydrologic 

regime known as the Great Basin. The Amargosa Desert is part of the Death Valley groundwater 

basin. The Funeral Mountains separate the Amargosa Desert from Death Valley to the southwest, 

and a series of mountain ranges bound the northern and eastern extents of the desert. The present 

climate in the Amargosa Desert region is arid to semi-arid, with average annual precipitation 
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Desert, continues until it turns northwest, and terminates in Death Valley from its southeast 

extension. As a result of the semi-arid to arid continental climate, the Amargosa River and its 

tributaries are ephemeral streams that are dry most of the time except in a few relatively short 

reaches where springs maintain small, perennial base flows. Fortymile Wash and Beatty Wash 

(in addition to the washes in Crater Flat and Rock Valley) are the major tributaries of the upper 

Amargosa River, which drains through several small, populated areas downstream. Fortymile 

Wash originates between Timber Mountain and Shoshone Mountain. Fortymile Wash is an 

ephemeral drainage that flows southward along the east side of Yucca Mountain and fans out in 

the northern Amargosa Desert just north of U.S. Highway 95. Near Highway 95, the Fortymile 

Wash channel changes from being moderately confined to several distributary channels that are 

poorly confined. This distributary drainage pattern persists downstream to its confluence with the 

Amargosa River. 

3.3 METHODOLOGY 

Groundwater chemistry data used herein were obtained from the Nye County Nuclear 

Waste Repository Project Office (NWRPO) (NWRPO, 2008) and a Los Alamos National 

Laboratory report (LANL, 2007). Data were compiled into a single database consisting of 210 

sampling locations covering the Amargosa Desert region. Sampling locations are mainly 

composed of wells, some with multiple screened depths, while the remainder are fresh springs. 

These data were then input into PHREEQC (version 2.12.5) and STATISTICA™9 (StatSoft Inc., 

1984–2010). The data for hydrochemical modeling included the major ions (Ca2+, Mg2+, Na+, K+, 

Cl-, SO4
2-, SiO2, F-, and total alkalinity), in addition to pH, temperature and Eh. Multivariate 

statistical analyses included the concentrations of Ca2+, Mg2+, Na+, K+, Cl-, SO4
2-, F-, and HCO3

-; 
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the ion-exchange couple Ca2+/(Na+)2 using log-transformed concentrations; and the SIs of 

designated species near saturation (anhydrite [CaSO4], calcite [CaCO3], and fluorite [CaF2]). 

3.3.1 Hydrochemical modeling 

The computer program PHREEQC is capable of describing a variety of geochemical 

processes in groundwater systems. The program was used to conduct simulations using a chosen 

set of dissolved species and mineral phases to describe oxidation– reduction (redox) reactions 

and thermodynamic equilibrium, including ion exchange, dissolution, and precipitation. 

PHREEQC was used to calculate thermodynamic equilibrium SI for mineral species, based on 

major ions, temperature, pH, F- and SiO2. The SI is defined as the logarithm of the ratio of the 

ion activity product (IAP) of the component ions of the solid in solution to the solubility product 

(K) for the solid [SI = log (IAP/K)]. If the SI is zero, the water composition reflects the solubility 

equilibrium with respect to the mineral phase. A negative value indicates undersaturation and a 

positive value indicates supersaturation. 

3.3.2 Multivariate statistical methods 

Multivariate statistical methods (MSMs) are powerful tools used to examine large, 

complex datasets in order to help identify parameters or dimensions that describe data, which 

may thus provide new insight into their behavior (Mellinger, 1987). MSMs applied herein are 

principal component factor analysis (PCFA) and k-means cluster analysis. PCFA is a dimension 

reduction method and cluster analysis is a classification method.  

Factor analysis methods allow a reduction in the number ofvariables that describe system 

behavior and the identification of new, homogeneous subgroups that are easier to identify 

(Lawrence and Upchurch, 1982). PCFA uses linear combinations of the variables to form the 
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factors with a mean of zero and standard deviation of one. The linear combinations permit PCFA 

to retain as much as possible of the original data variation and spatial distribution in factor-space, 

and allow for the use of rotation schemes that better reveal similarities within variables or cases. 

The most common rotation is the normalized varimax rotation, which attempts to find the 

rotation that will maximize variability on the rotated axes while minimizing it everywhere else 

(Mellinger, 1987). A k-means cluster analysis attempts to minimize the variability within each 

cluster while maximizing the variability between clusters. The mean of a cluster, or centroid, has 

its components specified by the average of each variable in the analysis. The algorithm uses one 

initial observation per cluster as the mean for that cluster, and then evaluates each of the 

remaining observations for inclusion into a particular cluster.  

Using STATISTICA™9 (StatSoft Inc., 1984–2010), a PCFA was performed on the 

concentrations of Ca2+, Mg2+, Na+, K+, Cl-, SO4
2-, F-, and HCO3

-, on the log-transformed ion-

exchange couple Ca2+/ (Na+)2, and on the SIs of anhydrite, calcite, and fluorite to reduce the 

number of variables to four. Input data of raw concentrations were not log-transformed as the 

factor analysis is conducted on the correlation matrix of the data, thus eliminating any normality 

requirements for variables’ distributions. However, the saturation indices and ion-exchange 

couple are logarithmic. After the factor analysis, a rotation of the first four factors was conducted 

to find relationships among the original variables. Based on the rotated factors of the ion 

chemistry, factor scores were generated for each of the 210 sampling locations, thus producing a 

loading table indicating the decomposition of each of the samples into the four rotated factors. 

Using the same statistical software, the factor scores from the rotated PCFA results were then 

evaluated with the k-means cluster analysis to cluster wells with a similar composition into six 

separate sample groups, or hydrochemical facies. The k-means cluster analysis variables 
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evaluated are the four factor scores, and the observations are the factor scores for each sampling 

location. 

Rotated factor loadings for major ions and factor scores for each sampling location, 

grouped into clusters, are presented on biplots. Biplots are simultaneous bivariate (factor 

loadings and factor scores) scatter plots that provide a visual picture of the relationships between 

and among different variables and observations. The biplots presented herein have two scales: 

one for factor score of sampling locations (i.e., bottom and left) and the other for factor loadings 

of ions (i.e., top and right). Note that the positive and negative signs are not significant; only the 

relative locations along the new dimension are important (normalized and standardized factor 

scores). Sampling locations are shown as symbols, and ions are shown as purple vectors with 

their ends (i.e., arrows) located at the factor loading values for each variable. For illustration 

purposes, the scale for original variables is arbitrarily selected, since only their direction is of 

relevance to the factor scores, but the same scale is used for all input variables (ion 

concentration, ratios and SIs). Each variable line indicates the direction of increasing variable 

content in the samples, and their projection onto the factor axis is their contribution and 

correlation to that factor. 

Contour plots presented herein were developed with Surfer™8 (Golden Software Inc., 

2008) using the existing natural neighbor gridding method of the software. Contour plots of the 

resulting factors were overlaid on a digital elevation map (DEM) of the region to reveal 

groundwater signatures and potential flowpaths. A contour plot of a factor would be equivalent 

to a contour plot of a hydrochemical process delineating its areas of influence and indicating the 

direction of evolution of that process (perpendicular to the contour) (Lawrence and Upchurch, 

1982). 
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3.4 RESULTS  

3.4.1 Chemical speciation and saturation indices 

The distribution of the Amargosa Desert’s groundwater chemical speciation is shown in 

Table 3.1. 

3.4.1.1 Carbon (IV) 

The major ionic species of C (IV) in the Yucca Mountain groundwater is HCO3
-, 

representing between 82% and 97% of all C (IV) species, with a mean concentration of 2.74 × 

10-3 molal. The ion CaHCO3
+ represents 0.2–1.4% of all C (IV) species and CO3

2- represents 

0.07–0.6% of all C (IV) species. 

3.4.1.2 Calcium 

Ca2+ comprises 72–97% of all dissolved Ca, with a mean concentration of 2.95 × 10-4 

molal. The species CaSO4, CaHCO3
+ and CaCO3 are in the ranges 1.8–23%, 1.2–4% and 0–

3.4%, respectively. 

3.4.1.3 Chloride  

Chloride is of primary concern in any geochemical analysis because it is a highly 

nonreactive tracer, non-volatile and hydrologically mobile (Glynn and Plummer, 2005; Hem, 

1992). There are no expected sources or sinks of Cl- ions, which is an advantage for 

understanding the flow system. All of the Cl is in the ionic form of Cl- with a mean concentration 

of 5.56 × 10-4 molal. 

3.4.1.4 Fluoride  

The ionic form F-, with a mean concentration of 1.51 × 10-4 molal, represents more than 

97% of F, while MgF+, CaF+, and NaF constitute less than 2.5, 0.8 and 0.4%, respectively. 
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Table 3.1: Distribution of Species in Yucca Mountain Region Groundwater. 

Major Species Minor Species Minimum Value (Molal) Maximum Value (Molal) Mean St. dev. Species percentage % 

C (IV) Total 1.41E-03 5.80E-03 2.91E-03 1.13E-3 100 
HCO3

- 1.27E-03 5.36E-03 2.74E-03 1.10E-3 82 – 97 
CO2 3.06E-05 3.74E-04 1.25E-04 0.10E-3 1-18 
CaHCO3

+ 2.63E-06 7.41E-05 1.82E-05 1.42E-05 0.2 – 1.4 
CO32- 1.37E-06 2.21E-05 7.77E-06 5.78E-06 0.07– 0.6 
NaHCO3 5.69E-07 2.15E-05 5.75E-06 5.04E-06 0.03 – 0.5 
MgHCO3

+ 1.31E-07 2.09E-05 3.82E-06 4.38E-06 0.01 – 0.4 
CaCO3 7.86E-08 1.38E-05 2.12E-06 3.21E-06 0.01 – 0.3 

Ca Total 3.74E-06 1.37E-03 3.28E-04 0.31E-3 100 
Ca2+ 3.46E-06 1.15E-03 2.95E-04 0.26E-3 72 – 97 
CaSO4 1.31E-07 1.67E-04 2.05E-05 3.54E-05 1.8 – 23 
CaHCO3

+ 7.78E-08 5.13E-05 8.80E-06 1.10E-05 1.2 – 4 
CaCO3 6.46E-08 1.31E-05 3.54E-06 3.80E-06 0.001 – 3.4 

Cl Total 9.03E-05 2.23E-03 5.56E-04 0.61E-3 100 
Cl- 9.03E-05 2.23E-03 5.56E-04 0.61E-3 100 

Na Total 1.35E-03 7.41E-03 3.48E-03 1.65E-3 100 
Na+ 1.35E-03 7.35E-03 3.46E-03 1.63E-3 99 – 100 
NaSO4

- 8.68E-07 4.01E-05 8.72E-06 1.06E-05 0.06 – 0.6 
NaHCO3 8.42E-07 1.70E-05 4.74E-06 4.48E-06 0.06 – 0.2 
NaCO3

- 3.26E-08 6.02E-06 1.42E-06 1.61E-06 0.01 – 0.1 
F Total 3.16E-05 3.53E-04 1.52E-04 9.47E-05 100 

F- 3.11E-05 3.52E-04 1.51E-04 9.40E-05 97 – 99.9 
MgF+ 6.29E-08 6.11E-06 8.03E-07 1.48E-06 0.1 – 2.3 
CaF+ 3.92E-09 1.74E-06 2.83E-07 4.19E-07 0 – 0.7 
NaF 1.76E-09 8.15E-07 1.47E-07 2.17E-07 0 – 0.3 

K Total 1.31E-05 3.33E-04 1.01E-04 8.35E-05 100 
K+ 1.30E-05 3.30E-04 1.01E-04 8.29E-05 99 – 100 
KSO4

- 6.98E-09 2.86E-06 3.47E-07 6.63E-07 0.04 – 0.8 
Mg Total 4.11E-07 6.59E-04 8.44E-05 0.17E-3 100 

Mg2+ 3.86E-07 5.28E-04 7.18E-05 0.13E-3 78 – 96 
MgSO4 1.07E-08 1.01E-04 9.14E-06 2.44E-05 2 – 15 
MgHCO3

+ 5.89E-09 2.16E-05 2.36E-06 5.32E-06 1 – 4 
MgCO3 2.84E-09 6.11E-06 7.41E-07 1.59E-06 0.2 – 3 
MgF+ 1.76E-09 4.47E-06 4.23E-07 1.02E-06 0.05 – 2 

S(6) Total 7.50E-05 2.14E-03 4.48E-04 0.52E-3 100 
SO4

2- 7.32E-05 1.83E-03 4.11E-04 0.45E-3 86 – 99 
CaSO4 8.22E-07 1.67E-04 2.15E-05 4.00E-05 0.9 – 8 
NaSO4

- 9.08E-08 1.01E-04 1.06E-05 2.36E-05 0.06 – 5 
MgSO4 6.98E-09 4.01E-05 4.58E-06 1.07E-05 0.01 – 2 

Si Total 1.17E-04 1.17E-03 8.00E-04 0.25E-3 100 
H4SiO4 1.06E-04 1.16E-03 7.77E-04 0.26E-3 71 – 99 
H3SiO4

- 1.12E-06 1.56E-04 2.55E-05 3.62E-05 0.1 – 29 
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3.4.1.5 Potassium 

K+ is the main ionic species, constituting 78% of the total K in the area, with a mean 

concentration of 1.01 × 10-4 molal. The KSO4
- species represents less than 0.8%. 

3.4.1.6 Sodium  

In all the groundwater data, Na+ constitutes the major ionic species (ranging between 

99% and 100% of Na), with a mean concentration of 3.46 × 10-3 molal. The minor species 

include NaSO4
- (0.06–0.6%), NaHCO3 (0.06–0.2%), and NaCO3

- (0–0.1%). 

The Na–Cl relationship has often been used to identify the mechanisms for acquiring 

salinity and saline intrusions in semi-arid regions (Glynn and Plummer, 2005; Hem, 1992). The 

low concentrations of Na+ and Cl- in groundwater suggest that the dissolution of halite is not 

important in regulating the concentration of Na+ in groundwater and that there are other sources 

of Na+ and Cl-. 

3.4.1.7 Magnesium 

Mg2+ represents 78–96% of Mg species in the groundwater, with a mean concentration of 

7.18 × 10-5 molal; MgSO4 represents 2–15%, MgHCO3
+ 1–4%, MgCO3 0.2–3%, MgF+ 0.05–2%, 

and MgOH+ 0–0.4%. 

3.4.1.8 Sulfur  

The major ionic species of S (VI) is SO4
2-, ranging from 86% to 99%, with a mean 

concentration of 4.11 × 10-4 molal; CaSO4 constitutes 0.9–8% and NaSO4
- constitutes 0.06–5%. 

3.4.1.9 Silicon 

The Si species in groundwater are H4SiO4 (71–99%, with a mean concentration of 7.77 × 

10-4 molal) and H3SiO4
- (0.1–29%).  
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The speciation calculations indicate that the elements Ca, Cl, F, K, Mg and Na are 

distributed more than 90% as free ion species in most of the analyzed groundwater samples. For 

the elements C, S, and Si, the dominant species (HCO3
-, SO4

2- and H4SiO4, respectively) 

represented more than 90% of most of the elemental concentration.  

Mean saturation indices of different minerals are given in Table 3.2. The groundwater is 

undersaturated (negative SI) with respect to some minerals (for example: anhydrite, chrysotile, 

dolomite, fluorite, gypsum, halite, quartz and sepiolite), oversaturated (positive SI) with respect 

to talc, and near saturation (SI ≈ 0) with respect to some other minerals (for example: amorphous 

silicate, aragonite, calcite and chalcedony).  

Table 3.2: Saturation Indices for Groundwater Samples from Yucca Mountain Region. 

Species Chemical formula Minimum value Maximum value Mean St. dev. Wells near 
saturation (%) 

Wells over 
saturation (%) 

Anhydrite CaSO4 -5.12 -1.68 -2.7 0.69 0 0 
Aragonite CaCO3 -1.99 0.94 -0.17 0.47 76 0 
Calcite CaCO3 -1.85 1.08 -0.03 0.47 78 0.5 
Chalcedony SiO2 -0.55 1.03 0.43 0.2 61 0.5 
Chrysotile Mg3Si2O5(OH)4 -11.6 5.83 -3.2 2.55 8 4 
Dolomite CaMg(CO3)2 -4.18 2.31 -0.6 1.1 40 7 
Fluorite CaF2 -3.45 0.19 -1.1 0.57 16 0 
Gypsum CaSO4•2H2O -4.93 -1.46 -2.5 0.7 0 0 
Halite NaCl -8.33 -6.44 -7.5 0.48 0 0 
Quartz SiO2 -0.16 1.47 0.85 0.21 6 27 
Sepiolite Mg2Si3O7.5OH•3H2O -7.25 3.73 -1.75 1.8 15 4 
SiO2(a) SiO2 -1.35 0.19 -0.39 0.19 78 0 
Talc Mg3Si4O10(OH)2 -7.11 9.97 1.33 2.6 12 58 

 

The minerals with positive SI may precipitate, thus reducing aquifer porosity and 

permeability. Similarly, the minerals with negative SI that are present in aquifer rock will 

dissolve during groundwater flow, which will increase its porosity and permeability. The 

minerals with SI near zero refer to a thermodynamic equilibrium between the groundwater and 

the specified solid phase. 
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Application of speciation models to low-temperature groundwater environments has led 

to several important principles and observations. Homogeneous reactions among aqueous species 

that occur within the same oxidation state of the elements involved (e.g., HCO3
-/CO3

2-; SO4
2-

/HSO4
-) are rapid and equilibrium can be assumed; in contrast, equilibrium is usually not attained 

between aqueous species with differing oxidation states (e.g., SO4
2-/HS-, HCO3

-/CH4). A small 

number of minerals, usually of relatively high solubility, appear to behave reversibly in natural 

systems (e.g., calcite, halite and fluorite); most other minerals (e.g., primary silicates) do not 

react completely to equilibrium but can still have an important effect on natural-water chemistry. 

Some weathering products of primary silicates tend to react to equilibrium, but kinetic processes 

are important in the formation of complex siliceous clay minerals (Glynn and Plummer, 2005). 

Groundwater systems were recognized early on as partial equilibrium systems (Glynn 

and Plummer, 2005), in which some reactions respond reversibly while driven by one or more 

irreversible reactions (e.g., oxidation of organic C driving SO4
2- reduction, and/ or carbonate 

mineral reactions; dissolution of anhydrite driving dedolomitization; dissolution of primary 

silicates driving the formation of clays and cementation with calcite and silica). These reactions 

are important in understanding geochemical evolution of groundwater systems, and can affect 

the hydrologic properties of aquifer systems. Some natural waters that appear to be at or near 

equilibrium with a given mineral phase, according to speciation calculations, may in fact be 

undergoing significant dissolution/ precipitation of the mineral as a result of other irreversible 

reactions. 

3.4.2 Multivariate statistical methods 

Rotated factor loading distributions for each variable are presented in Table 3.3, along 

with the amount of total proportional variance explained by each rotated factor; high loading, 
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shown in bold, indicates a high degree of correlation. Factor 1 explains 29% of the variance and 

is dominated by Mg2+, HCO3
- and Ca2+, whereas factor 2 explains 26% of the variance and is 

primarily composed of Cl-, Na+ and SO4
2-. 

Table 3.3: Rotated Factor Loadings for Major Ions, Fluoride and SIs. 

Parameter Factor 1 Factor 2 Factor 3 Factor 4 
Ca2+  0.74 0.42 0.40 -0.01 
Mg2+  0.93 0.14 0.13 -0.04 
Na+  0.32 0.75 -0.47 0.27 
K+  0.49 0.54 0.23 0.12 
Cl-  0.17 0.91 -0.01 0.16 
SO4

2-  0.57 0.75 0.07 0.05 
F-  -0.013 0.08 -0.37 0.90 
HCO3

-  0.83 0.35 -0.23 0.23 
Ca2+/(Na+)2 0.16 -0.14 0.95 -0.16 
Anhydrite (CaSO4) 0.54 0.53 0.60 0.04 
Calcite (CaCO3) 0.58 0.21 0.26 0.15 
Fluorite (CaF2) 0.29 0.37 0.46 0.74 
Variation 3.54 3.06 2.18 1.57 
Percentage 0.29 0.26 0.18 0.13 

High factor loadings on variables are presented in bold. 

The first two rotated factors represent about 55% of the variation, whereas the remaining 

two explain nearly 31% of the variance, with dominant species of (Ca/Na) ion exchange in the 

third factor and F- and fluorite SI in the fourth factor. In total, the first 4 factors explain 86% of 

the system’s variations. By matching the chemical compositions of the minerals in each factor, it 

is noted that the first factor is dominated by ions that are typically associated with the dissolution 

of carbonate, alkalinity and weathering processes, and/or carbonate aquifer upwelling. The 

second factor is dominated by ions that are typically associated with concentration of the water 

by evaporation prior to deep infiltration (Cl-, Na+ and SO4
2-). The third factor, dominated by 

Ca+2/(Na+)2 and followed by anhydrite, is generally associated with processes involving zeolites 

from volcanic rocks in the region; it separates Ca- versus Na-dominated waters. The fourth factor 

aids in the separation of carbonate water groups.  
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The factor scores from the rotated PCFA results were evaluated with k-means cluster 

analysis to group sampling locations with a similar genesis into six groups, or hydrochemical 

facies. Results are presented on the biplots in Figures 3.2 and 3.3, which depict factor 1 versus 

factor 2 and factor 3 versus factor 4, respectively. Loading and alignment of ions and factors can 

be observed in Figures 3.2 and 3.3, and Table 3.3. Alignment with a particular factor is indicated 

by a lack of loading and alignment with other factors. Ions with a high loading and alignment 

with a factor simplify interpretation of the factors. Figure 3.2 can roughly be interpreted as the 

separation of samples into Na–Cl and Mg–HCO3 hydrochemical facies. Further inspection of 

Figure 3.2 and Table 3.3 demonstrates some factor complexity for Ca, SO4 and anhydrite, as they 

do not align with one single factor and instead load with factors 1 and 2. Figure 3.2 indicates two 

very distinct groundwater chemical signatures: one with carbonate characteristics and the other 

showing evaporative evolution. Figure 3.3 can roughly be interpreted as the separation of 

samples into ‘‘ion exchange’’, anhydrite and fluoride with further separation provided by Na and 

fluorite, both of which present factor complexity. Table 3.4 shows the six groups determined 

from the k-means cluster analysis of the PCFA results and the median of major ion 

concentrations, Ca/Na ion exchange, and SI, demonstrating the different average compositions 

between the groups. Description and location of these clusters are shown in Table 3.5. 
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Table 3.4: Median Values of Major Ion Composition, Ion Exchange and SI for the PCFA k-mean 
Cluster Analysis for Six Groups. 

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 All Samples 
Number of wells 10 40 31 11 15 99 206 
Ca2+ (mg/L) 1.2 42.4 25.7 60.2 2.6 16.8 21.3 
Mg2+ (mg/L) 0.1 16.0 6.3 31.6 0.1 1.8 4.1 
Na+ (mg/L) 97.6 101.3 130.0 84.6 90.6 50.2 94.1 
K+ (mg/L) 2.8 11.8 9.4 8.3 2.0 5.1 6.7 
Cl- (mg/L) 6.3 23.9 48.4 16.3 7.8 7.9 12.1 
SO4

2- (mg/L) 16.4 99.5 127.5 132.0 28.1 26.9 63.8 
F- (mg/L) 2.1 3.3 2.0 0.8 3.9 1.6 2.1 
Total alkalinity as CaCO3 (mg/L) 184.2 238.9 193.6 292.2 178.0 112.4 188.9 
HCO3

- (mg/L) 178.8 291.4 236.1 356.3 193.0 135.0 214.6 
Ca2+/(Na+)2 -5.1 -3.6 -3.8 -3.1 -4.7 -3.3 -3.7 
SI anhydrite (CaSO4) -4.3 -2.1 -2.2 -1.9 -3.5 -2.8 -2.5 
SI calcite (CaCO3) -0.4 0.2 0.1 0.6 -0.1 0.0 0.1 
SI fluorite (CaF2) -2.2 -0.3 -0.9 -1.3 -1.6 -1.2 -1.3 
Non carbonate alkalinity fraction (%) 98 37 38 4 96 55 46.5 

Table 3.5: Cluster Descriptions and Locations. 

Cluster Description Location 
1 Fresh water diluted, lowest Ca2+, Mg2+, Cl-, Ca2+/(Na+)2 and fluorite; 

non-carbonate alkalinity. 
Northern, west face and southern Yucca Mountain 

2 Carbonate signature with high fluorite. Ash Meadows, Death Valley 
3 More highly evaporated water. High Na+, Cl-, and SO4

2-. Funeral Mountains, Ash Meadows, around Oasis 
Valley, and southeast of Fortymile Wash 

4 Highest Ca2+-Mg2+,  with high Ca2+/(Na+)2, lowest fluoride and highest 
sulfate. Carbonate waters; supersaturated with calcite and near 
saturation with anhydrite. 

Crater Flat, Striped Hills and Skeleton Hills 

5 Waters with highest fluoride. High Na+ and low Ca2+/(Na+)2 and Mg2+ 
with the lowest K+. Non-carbonate alkalinity 

West face of Yucca Mountain  

6 Dilute water. Fortymile Wash 
 

Based on the results in Tables 3.3–3.5 and Figures 3.2 and 3.3, for clusters 1 and 5 the 

preponderance of the alkalinity appears to be related to silicate weathering rather than dissolution 

of carbonates. Alkalinity exceeds that which can be accounted for by the Ca2+ and Mg2+ 

concentrations in those samples; Na dominates over Ca (ion exchange parameter). Cluster 6 has 

about 50% non-carbonate alkalinity. The geochemical data support north-south flow along 

fractures that differs from the hydraulic gradient in the areas of clusters 1, 5, and 6; Ca versus Na 

preponderance and F- differentiate these three groups (Figure 3.3, factor 4). Clusters 2 and 4 

show high Ca2+ and Mg2+ concentrations, which are more consistent with carbonate waters. 
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Clusters 2 and 3 have about 1/3 non-carbonate alkalinity, suggesting a combination of 

dissolution of carbonates and silicate weathering. In the three high carbonate clusters, cluster 4 is 

predominantly Ca–Mg carbonate alkalinity. Carbonate groups 2 and 4 can also be differentiated 

on the basis of F- and fluorite saturation (Figure 3.3, factor 4). Cluster 3 represents highly 

evaporated shallow groundwater flowing from Oasis Valley through the Amargosa Desert, 

roughly following the Amargosa River, and then turning towards Ash Meadows. This cluster 

represents the greatest average evaporative concentration prior to infiltration, as evidenced by Cl- 

concentrations, whereas cluster 6 (Fortymile Wash) has the least amount of evaporative 

concentration. This is consistent with the topography, which is more gentle in the Oasis Valley, 

leading to less infiltration of storm runoff and less infiltration at high elevations. 

Figures 3.4–3.7 present separate contour plots of the first through fourth rotated factor 

scores overlain on a DEM, along with three inferred potential flow paths. The red arrow shows 

the trace of the Amargosa River and the solid blue arrow shows the trace of Fortymile Wash and 

its convergence with the Amargosa River. The dashed pink arrow shows a potential flow path 

east to west from Rock Valley (east of Skull Mountain) toward Death Valley, along the trace of 

Gravity Fault (indicative of structural connections between the Yucca Mountain-Crater Flat area 

and southern Amargosa Desert), or possible upwelling from the underlying carbonate aquifers 

through fractures and faults. In Figure 3.4, high values of factor 1, which represent Ca2+ and 

Mg2+, are located at Striped Hills, Skeleton Hills, and Crater Flat, which are downgradient of 

outcrops of the underlying carbonate aquifer. In Figure 3.5, high values of factor 2, which 

represent Cl- and Na+, are found near the Funeral Mountains, around Oasis Valley, and SE of 

Fortymile Wash. In Figure 3.6, the high values of factor 3 (representing Ca2+/(Na+)2) are found at 

Ash Meadows, Crater Flat, Striped Hills, and Skeleton Hills, whereas low values are found at 
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and sepiolite, oversaturated with respect to talc, and near saturation with respect to amorphous 

silicate, aragonite, calcite and chalcedony. The oversaturated minerals may precipitate and 

adversely affect the aquifer properties. Similarly, the undersaturated minerals, if present, will 

dissolve from aquifer rock during groundwater flow, which will increase its porosity and 

permeability. The minerals near saturation reflect thermodynamic equilibrium between the 

groundwater and the specified solid phase.  

Principal component factor analysis and k-means cluster analysis applied to major ions, 

ion exchange, and SI describe the system through 4 factors, identify six hydrogeochemical 

facies, and allow the visualization of the processes that govern their evolution. In the factor 

analysis, factor 1 (29% of the variance) is dominated by Mg, alkalinity and Ca, whereas factor 2 

(26% of the variance) is primarily composed of Cl, Na and SO4. The remaining two factors 

explain 31% of the variance, dominated by Ca/Na ion exchange in the third factor and F- in the 

fourth factor. Factor 1 differentiates clusters 1, 3, and 6 (low Ca–Mg values) from clusters 2 and 

4. Factor 2 separates cluster 3 with high Cl–Na values from the other clusters. Factor 3 separates 

Na-dominated waters (clusters 1 and 5) from the other clusters. Factor 4 differentiates the three 

Ca–Mg–HCO3 groups from each other on the basis of F-. The k-means cluster analysis produced 

six groups, which are presented on biplots to separate the samples into four basic factors.  

The spatial plots of factor-score contours delineate areas influenced by particular 

hydrochemical processes and indicate the direction of change in that process (perpendicular to 

the contour); they allow the exposition of hydrochemical signatures indicating groundwater flow 

paths and their interaction with the geologic media. Together, factor-score contours and 

hydrochemical facies indicate the three potential groundwater flow paths or signatures presented 

in Figures 3.4–3.7. The hydrochemical and statistical analysis shows that the first major flow 
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path of the study area’s groundwater is beneath the Amargosa River, while the second one 

follows the trace of Fortymile Wash and its convergence with the Amargosa River. The third 

flow path is related to the trace of the Gravity Fault, Rock Valley and Death Valley. The 

signatures of major ion chemistry appear to be obtained near the region of infiltration, with little 

change along the flow paths. The high values of factor 1, which represent Mg2+ and Ca2+, are 

located at Striped Hills, Skeleton Hills, and Crater Flat, which are downgradient of outcrops of 

the underlying carbonate aquifer. The high values of factor 2, which represent Cl- and Na+, are 

found near the Funeral Mountains, around Oasis Valley, and SE of Fortymile Wash. The high 

values of factor 3, representing Ca2+/(Na+)2, are found at Ash Meadows, Crater Flat, Striped 

Hills, and Skeleton Hills, whereas low values are found at northern and southern Yucca 

Mountain and along its west face. Finally, the low values of factor 4, which correspond to low 

concentrations of F- and low fluorite SI, are found encompassing Crater Flat, Striped Hills, and 

Skeleton Hills, whereas the high concentrations are found at Ash Meadows, Death Valley, and 

the west face of Yucca Mountain. The geochemical data support north-south flow along fractures 

that differs from the hydraulic gradient in the areas of clusters 1, 5 and 6. In the Ash Meadows 

area, which is near the edge of the study area, cluster 2 suggests a more east–west flow path. 

Based on the previous analysis, the study area’s groundwater flows from north to south, 

following the traces of the Amargosa River and Fortymile Wash until they converge, and from 

east to west from Rock Valley (east of Skull Mountain), along the trace of Gravity Fault toward 

Death Valley. These results imply that contaminants could migrate from Yucca Mountain toward 

the Amargosa Valley, where groundwater is widely used for drinking water and crop irrigation. 
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ABSTRACT 

This research, as part of the Nye County Nuclear Waste Repository Project Office 

(NWRPO) attempts to provide new insight into the chemical evolution of southern Nevada’s 

groundwater, its potential flow paths, infiltration rates, and surface-runoff processes, through 

initiating a surface-runoff sampling network. The sampling network tracks the chemical footprint 

of the surface-runoff water and groundwater recharging infiltration chemistry, by collecting 

baseline data through a long term study on a comprehensive suite of chemical parameters. These 

parameters include major ion chemistry, nutrients, trace elements, and stable isotope ratios. 

Multiple analytical methods are employed to analyze this data to develop a defensible 

groundwater chemistry monitoring network, down-gradient of Yucca Mountain, suitable for 

long-term performance confirmation monitoring. This study includes precipitation water 

chemistry, surface water runoff chemistry, soil chemistry, and groundwater chemistry in the 

study area. The field sampling and analyses provide the required chemical data for precipitation 

water, surface water runoff, and sediment analysis. The groundwater chemistry and isotopic data 
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administered by the NWRPO contain data from more than 200 wells that encompass the entire 

region. New methods were developed to control the construction and emplacement of the 

surface-runoff samplers. In addition, improved methods for the collection, field testing, and 

handling of precipitation water samples, surface-runoff water samples, and sediment samples 

were employed between the time the samples were gathered and chemical analyses obtained. The 

design and emplacement of sixty surface-runoff samplers at thirty separate locations is explained 

and a look at initial data is provided. It is our belief that long term data collection of this type 

will help us to better understand processes controlling groundwater recharge, and thus the 

sustainable yield of groundwater in Nye County. 

4.1 INTRODUCTION 

Natural tributaries in arid regions are generally ephemeral and the flow occurs 

intermittently during short, isolated periods separated by longer periods of low or zero flow; 

sustained flow is rare and baseflow is essentially absent (Sharma and Murthy, 1996). Peak flow 

rates occur within a few hours of the start of a rise (Sharma and Murthy, 1996). Normally, large 

volumes of surface-runoff water move into the ephemeral channel in a short period causing the 

flash flood characteristic of arid zone drainage basins, flash floods are usual hydrologic features 

of desert drainage (Fisher and Minckley, 1978). Drainage basins with high relief, a large 

percentage of land bedrock, sparse vegetation and shallow soils are particularly susceptible to 

flash flooding (Fisher and Minckley, 1978). Regularly, peak flow rates are reached almost 

immediately because the ephemeral flood wave forms a steep wave front, or the wall of water of 

legends, in its travel downstream (Jones, 1981; Pilgrim et al., 1988). Two mechanisms contribute 

to the formation of the wall of water of legends. First, rate of infiltration into the permeable dry 

streambed is highest at the wave front and decreases in the upstream direction, with the effect 
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that the leading edge of the wave steepens as it moves downstream (Fisher and Minckley, 1978). 

Second, the deeper portion of the flood wave near the peak travels faster than the leading edge of 

the wave, with the result that the wave peak approaches the front until the peak and front almost 

coincide and a shock front is formed (Sharma and Murthy, 1996). 

Studies of the Amargosa Desert regional groundwater indicate that the groundwater 

recharge is occurring from streamflow in Fortymile Wash. Water quality studies have studied 

precipitation, surface water, and groundwater isotopic and common ion concentrations and 

concluded recharge water is entering the groundwater system north of Yucca Mountain from 

streamflow. Computer simulation of the groundwater system has determined that recharge from 

Fortymile Wash is a significant component of the water budget. Groundwater levels rise after 

streamflow events in Fortymile Canyon. Channel geomorphic studies indicate water is being lost 

from streamflow in the Yucca Mountain area. Several water chemistry studies have determined 

that streamflow in Fortymile Wash is a source of groundwater recharge. Claassen (1985) 

investigated common ion and isotope ages and concluded groundwater in the west central 

Amargosa Desert was recharged primarily from overland flow of snowmelt near the present day 

Fortymile Wash stream channel. White and Chuma (1987), investigated carbon and isotopic 

mass balances of the Oasis Valley-Fortymile Canyon groundwater basin and concluded 

groundwater in Fortymile Canyon may be from local origin. Benson and Klieforth (1989), 

investigated stable isotopes in precipitation and groundwater in the Yucca Mountain area and 

concluded groundwater recharge occurred by infiltration of cold-season precipitation, probably 

along the bottom of Fortymile Canyon. 

Estimates of net infiltration from both the mean glacial transition and mean modern 

climates indicate that the largest infiltration rates occur along northwest-trending fault-controlled 
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washes on the north end of Yucca Mountain (Patterson, 2004; USGS, 2004). Water from the 

Eastern Yucca Mountain facies appears to be a mixture of water from the Timber Mountain area 

to the north and local recharge from the northwest-trending washes on the north end of Yucca 

Mountain (Patterson, 2004; USGS, 2004). Water from the Timber Mountain area does not appear 

to flow beneath the crest of Yucca Mountain and mix with water from the Western Yucca 

Mountain facies (Patterson, 2004; USGS, 2004). 

This study explores the relationship between rainfall-runoff and groundwater chemistry, 

during a flash flood event in the Amargosa Desert Region, Nevada, and presents evidence of 

runoff chemical signature on the infiltration and groundwater recharge.  

4.2 STUDY AREA 

4.2.1 Description of the study area 

The Amargosa Desert (Figure 4.1) is located in the southern portion of Nye County in 

south central Nevada, within the Great Basin, and is part of the Death Valley groundwater basin. 

The Funeral Mountains separate the Amargosa Desert from Death Valley to the southwest, and a 

series of mountain ranges bound the north and east extents of the desert. The Amargosa River is 

a major drainage component (over 8,047 km2) of the unique closed-basin, hydrologic regime 

known as the Great Basin. This river system begins in the Oasis Valley, turns southeast to run 

through the Amargosa Desert, continues until it turns northwest, and terminates in Death Valley 

from its southeast extension. As a result of a dry, semi-arid, continental climate, the Amargosa 

River and its tributaries are ephemeral streams that are dry most of the time except in a few 

relatively short reaches where discharging springs maintain small, perennial base flows. 

Fortymile Wash and Beatty Wash (in addition to the Washes in Crater Flat and Rock Valley) are 
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fans out in the northern part of the Amargosa Desert just north of Highway 95. Near U.S. 

Highway 95, the Fortymile Wash channel changes from being moderately confined to several 

distributary channels that are poorly confined. This poorly-defined, distributary drainage pattern 

persists downstream to its confluence with the Amargosa River. Yucca Mountain is located on 

federal land in southern Nevada, north of the Amargosa Desert, approximately 160 km northwest 

of Las Vegas, in the Basin and Range province of the western United States, within a zone 

between the Mojave Desert and the southern boundary of the Great Basin Desert, and it's part of 

the Amargosa River drainage basin which is the major tributary drainage area to the Death 

Valley. Yucca Mountain has been chosen by the U.S Department of Energy as a potential site of 

a geologic repository for long term storage of the Nation's high-level nuclear waste, and it is 

expected to hold approximately 70,000 metric tons of radioactive waste, and will remain the 

proposed site to hold this waste until time as congress change the nuclear waste policy act. The 

present climate in the Amargosa Desert region is considered arid to semiarid, with average 

annual precipitation ranging from less than 130 millimeters (mm) at lower elevations to more 

than 280 mm at higher elevations (Flint et al., 2001).  

4.2.2 Runoff history in the study area 

Precipitation associated with a weather disturbance moving eastward from California has 

caused the most extensive regional runoff in Fortymile Wash and Amargosa River since 

February 1969 (Beck and Glancy, 1995). The 1969 flood was the largest known in the Amargosa 

River system during the previous 25 years. Flow in Fortymile Wash was first documented during 

site-characterization studies in March 1983. The Wash had flow again three times during July 

and August 1984 as the result of severe but localized convective storms. The first runoff 

documented case during site-characterization studies was the runoff of March 9-11, 1995 (Beck 
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and Glancy, 1995), where Fortymile Wash and Amargosa River flowed, simultaneously 

throughout their entire Nevada reaches. Preliminary data reported for selected U.S. Geological 

Survey's (USGS) rain gages around nuclear tests site boundaries and within Amargosa Desert 

area showed that cumulative precipitation ranged from about 51 to 152 mm during March 9-11, 

1995 with the larger amounts falling at the higher-altitude sites (Beck and Glancy, 1995).  

4.3 PREVIOUS STUDIES 

Fisher and Minckley (1978) described the change in selected chemical parameters during 

a single flash flooding event on Sycamore Creek, Arizona. Although floods are often viewed as 

dilution phenomena in terms of dissolved substances, in which low conductivity rainwater 

dilutes groundwater or spring water that are rich in dissolved salts, they observed that the 

dilution effects are partially offset by increased leaching and dissolution of solutes from newly 

exposed rock and soil minerals accumulated salt crusts, and from suspended particles. They 

noted that the major anions, bicarbonate, and conductivity followed a dilution pattern. Nitrate, 

phosphate and iron varied widely through the cycle, and generally increased over levels recorded 

at base flow. They attributed the increased concentrations of nitrate as discharge increased to 

leaching from the ephemeral stream beds and surrounding lands, and suggested that surface-

runoff contributed few nitrates to streams but yielded significant amounts of phosphate from 

high concentrations of particles in the water. 

Savard (1994) and Savard et al. (1994) presented the first hydrologic time series evidence 

for groundwater recharging in Fortymile Wash watershed, which had been hypothesized by 

previous water quality and regional groundwater studies, after five separate streamflow event 

periods happened in the Pah and Fortymile Canyons of Fortymile Wash approximately 10 km 

from Yucca Mountain during 1992-1993. Savard explained the source of groundwater recharge 
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as a streamflow infiltrating through the streambed sediments and the under-laying alluvial 

material. In 1998 Savard  estimated the volumes of streamflow, streamflow infiltration loss, and 

groundwater recharge rate for four reaches of Fortymile Wash near Yucca Mountain (Fortymile 

Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert) based on streamflow 

data from continuous streamflow gauging stations, crest-stage gages, and miscellaneous sites 

during 1969-1995 and depth-to-water data in boreholes from 1983-1995. He concluded that the 

Amargosa Desert reach had the highest groundwater recharge rate, 64,300 m3 per year. The 

Fortymile Canyon reach had a lower rate, 27,000 m3 per year, even though it had more frequent 

steamflow. The lower Jackass Flats reach had the third highest groundwater recharge rate, 

16,400 m3 per year. The upper Jackass Flats reach had the lowest groundwater recharge rate, 

1,100 m3 per year. The greatest depth to the water table, 100 to 350 m, of all the reaches was 

probably the biggest reason for very little recharge in the upper Jackass Flats reach. 

In 2001 USGS developed conceptual and numerical models of net infiltration for Yucca 

Mountain and the surrounding Death Valley region. The conceptual model describes the effects 

of precipitation, surface-runoff and runon, evapotranspiration, and redistribution of water in the 

shallow unsaturated zone on estimated rates of net infiltration (USGS, 2001), The numerical 

model simulated net infiltration ranging from zero, for a soil thickness greater than 6 meters, to 

over 350 mm per year for thin soils at high elevations in the Spring Mountains. Estimated 

average net infiltration over the entire model domain is 7.8 mm per year (USGS, 2001). 

Lemoine and others (1995) discussed a proposed methodology for the implementation of 

a monitoring tool for surface water run-off in (semi-) arid areas, by using integrated remote 

sensing and GIS techniques in order to develop alternative sources of drinking water and 

industrial water supplies. 
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Flint et al. (1996) presented a summary of methods used to estimate the quantity of water 

percolating below the root zone on Yucca Mountain. Estimates of annual average percolation 

range from 0 to 6.5 mm per year. It is generally agreed that the greatest amounts of net recharge 

occur where shallow soils overlie fractured bedrock and that little or no deep percolation occurs 

in deep colluviums and alluvium (Woolhiser, 2000). 

Woocay and Walton (2008) calculated the infiltration dates before present and pore 

velocities for four boreholes in the unsaturated zone near Yucca Mountain by applying a chloride 

mass-balance method. They observed, from pore velocities, two distinct slopes corresponding to 

different infiltration regimes. The first one, near the surface, presents the slowest infiltration rate 

indicating that, over the recent past, infiltration has been negligible at these locations. The 

second pore velocity corresponds to a past wetter period (late Pleistocene to early Holocene) 

with much higher pore velocities. The borehole nearest Fortymile Wash exhibits the highest pore 

velocities, whereas boreholes farther from the wash demonstrate lower velocities. They 

considered that the most dilute groundwater is present beneath Fortymile Wash, not beneath the 

mountains, suggesting that runoff infiltration is the dominant form of recharge in the region. 

They concluded that the younger and fresher groundwater beneath Fortymile Wash is the result 

of significant lowland infiltration due to accumulated surface-runoff occurring in localized areas 

such as the wash.   

The present research attempts to provide  new insight into the chemical evolution of 

southern Nevada’s groundwater and its potential flow paths and rates during the infiltration and 

surface-runoff processes, through initiating a surface-runoff sampling network to track the 

chemical footprint of the surface-runoff water on the groundwater recharging and infiltration 

chemistry, by collecting a baseline data through a long term study on a comprehensive suite of 
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chemical parameters. Multiple analytical methods are created to analyze these data to develop a 

defensible groundwater chemistry monitoring network, down-gradient of Yucca Mountain, 

suitable for long-term performance confirmation monitoring. 

4.4 METHODS 

4.4.1 Site locations selection 

The site locations were selected to include the major ephemeral streams that are 

tributaries the Amargosa River, and are surrounded by Nye County wells and boreholes (the 

yellow squares in Figure 4.1). The study plan is divided into three phases, Phase 1 was in 

January 2009 and includes 19 site locations (the blue circles in Figure 4.1), Phase 2 was in Feb. 

2009 and includes nine site locations (the red triangles in Figure 4.1), where Phase 3 includes 

two site locations (the orange stars in Figure 4.1) and was in September 2009. In total, 60 

surface-runoff samplers were installed in 30 different site locations in the vicinity of the 

Amargosa Desert Region. 

4.4.2 Surface-runoff samplers (SRSs) design and construction 

SRSs were designed to collect the soil water to measure the chemical characteristics of 

runoff water that has leached (infiltrated) through the soil profile. The construction started by 

threading flexible polyethylene tubing through a hole made about 25 mm below the top edge of 

the 9.5-liter bucket as shown in Figure 4.2a, to provide an access to the inside of the SRS once it 

is buried. The inner edge of the tubing was fixed to the bucket bottom with an epoxy adhesive, 

and the outer end blocked with a plug to prevent clogging the tubing. The completed devices 

were soaked in tap water for 24 hours before rinsing with distilled water to leach potential 

contaminants from the materials. In order to wash the silica sand to prevent the sand from 
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prevent washing out during storms. The emplacement procedure for both washed sand filled 

samplers and alluvial material filled samplers was the same with a few exceptions detailed in the 

following:  

1. Upon selection of a site for each SRS, approximately 3 liter of alluvial materials was 

collected in a test bucket after recording the observed sediment moisture.  These materials 

were passed through a No. 4 (4.75 mm) sieve, according to ASTM standards (ASTM 

D422-63, 1998), and 2 liter of the sieved material was collected in 2-liter sized wide-

mouth HDPE bottles. The initial water content of the sediment was determined in the lab 

according to ASTM standards (ASTM D-2216, 1998). The collected sediment was 

extracted in the lab according to ASTM standards (ASTM D4542, 1995), by mixing 2 kg 

of sediment with 3 liter of distilled water and the mixture left over night to settle, after that 

the leachate was separated, filtered, poured in to 2-liter wide mouth HDPE, and stored in a 

refrigerator for shipping later to the laboratory for analysis. Latex gloves must be worn 

during the emplacement process to avoid contaminating the sampler with sweat. 

2. A hole was dug at the selected locations within the arroyos, and the excavated dirt placed 

downstream of each hole. 

3. The depth of the hole was tested by using an additional bucket called the test bucket that 

has the same size as the sampler bucket.  The test bucket was placed in the hole and the 

depth was tested by moving a straight edge laid on the surrounding undisturbed surface 

over the top of the sampler. For an ideal fit, the top of the sampler was 25-50 mm below 

the undisturbed surface of the arroyo. 
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4. When an adequate depth was reached, the test bucket was removed and the earth was 

leveled beneath it to provide a stable base. 

5. 5a below followed for the washed sand samplers and 5b for the alluvial material samplers.  

5a. half of the SRSs were filled with the 8/12 washed sand. The lid was placed on the top 

of each sampler to check the depth and the level again. The previously removed alluvial 

material from the hole was used to backfill around the sampler within 25-50 mm of the 

top, and after removing the lid of the sampler the remaining space to the surface was 

backfilled with washed sand, and the area brought back up to grade with the undisturbed 

arroyo surface.  

5b. the second half of the SRSs (alluvial material samplers) were placed about 1.5-2.0 m 

down gradient of the washed sand samplers. If the arroyo width was 5 m or wider, the 

washed sand sampler and alluvial sampler was placed cross gradient. Over the sampler 

tubing intake washed silica sand was layered (filter pack) to further prevent entry and 

clogging of the hole. After that, the sampler was filled with the alluvial material.  The 

bucket and bucket sides were backfilled with alluvial material and the area was brought 

back up to grade with the undisturbed arroyo surface. 

6. The upper end of the sampling tube was sealed with a cap (ear plug), and the sampling 

tube was buried underneath the ground level to prevent sun (UV) damage.  

7. T-post (fence post) was painted at the top and was pounded on a flank of the wash to 

prevent it from being washed away during a storm. The T-post will identify the site and 

serve as the mount for the rain gauge. 
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8. The rain gauge was mounted about 25 mm above the top of the T-post.  

9. The coordinates of the SRS location were recorded by using a Trimble® GeoXH unit that 

has high accuracy In addition the distance and direction were recorded between the two 

samplers and from the T-post to the washed sand sampler and the alluvial sampler. 

4.4.4 Precipitation monitoring in the study area 

Mathematica7 software is used to monitor the weather data from the Amargosa Desert 

Region, in order to decide if a storm is strong enough to create  surface-runoff in the area or not. 

Using Mathematica7, two weather stations (KDRA and KBJN) in the Amargosa Desert Region 

are monitored daily. These stations provide data for temperature, pressure, humidity, wind speed, 

and the precipitation rate.  

4.5 RESULTS  

4.5.1 Surface-runoff sampling and samples chemical analysis results  

Two storm events occurred in the study area after the installation of the samplers, the first 

one was in the period of February 10-12, 2009, and the second one was during February 17-18, 

2009. The accumulated water level in the rain gauges was registered as shown in Table 4.1.  

In order to decide if the amount of water stored in the samplers after the storm events is 

enough to analyze all the chemical parameters (the major anions and cations, dissolved metals, 

nutrients, alkalinity, stable isotope ratio analysis of water, tritium, pH, EC, TDS, temperature, 

and stable isotope ratio analysis of carbon in total dissolved inorganic carbon) sample volume is 

compared to ACZ laboratory requirements (Table 4.2). The total amount of water required to 

analyze all parameters is 2030 ml. A simple model was developed to predict sample volume 
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based on the hydrological properties of the silica sands and the alluvial sands (i.e. sand porosity, 

specific yield, and specific retention), sampler dimensions, rainfall rate, and the thickness of the 

layer that lies above the tubing hole's entrance into the sampler. 

Assuming the sediment around samplers is saturated and there is no evapotranspiration, 

for both types of samplers Equation 4.1 is designed to calculate the water level in the sampler, 

and Equation 4.2 is designed to calculate the water volume in the sampler: 

ࡴ = ࡾ − ࢘ࡿ) × ࢔(࡯ .ࢗࡱ																																																		 ૝. ૚ 

ࢂ = ࣊ × ૛(૛ࡰ) × ࡴ × ࢔) − (࢘ࡿ × ૙. ૙૙૚										ࢗࡱ. ૝. ૛ 

where, 

H: water level in sampler, mm 

R: rain gauge reading, mm 

Sr: Specific retention, dimensionless 

C: layer covers thickness, mm 

n: porosity, dimensionless 

V: water volume in sampler, liter 

D: sampler average diameter, mm 

The estimated amount of water accumulated in the washed sand filled buckets is obtained 

by the substituting values of porosity (Fetter, 2001; Weight, 2008), specific retention (Fetter, 

2001; Weight, 2008), rainfall amount, sampler average diameter, sampler depth, and the 

thickness of the layer that cover the sampler, in the Equations 4.1 and 4.2. Measured and 

estimated amounts of water obtained from the sampling process are shown in Table 4.1 below. 
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Table 4.1: The Estimated and the Measured Amount of Water Accumulated in the Washed Sand 
Filled Buckets and the Rainfall Observations during the Period of 2/10-18/2009. 

Bucket filler hydrological properties 
Estimated amount of water in 
the washed sand filled bucket 

Measured amount of water in the 
washed sand filled bucket (Liter) 

Specific Retention (Sr)  0.075    

Depth of bucket (mm) 210    

Average diameter of bucket (mm) 216    

Porosity (n) 0.38    

Thickness of the cover layer(mm) 50.4    

SRS 
Location 

Elevation 
(m) 

Cumulative rain gauges 
precipitation (mm) during the 

period 02/10-18/2009 
Volume 
(Liter) % Full 

Depth 
(mm) 

Volume (Liter) 

SRS-6A 820.68 33 0.86 37% 77 1.45 ± 0.05 

SRS-6B 818.81 30 0.77 33% 68 2.00 ± 0.05 

SRS-7A 805.35 27 0.68 29% 60 1.55 ± 0.05 

SRS-7B 799.05 29 0.75 32% 67 1.82 ± 0.05 

SRS-8A1 761.29 27 0.68 29% 60 0.70 ± 0.05 

SRS-8A2 763.45 27 0.69 29% 61 0.97 ± 0.05 

SRS-8B 765.06 30 0.79 33% 70 1.30 ± 0.05 

SRS-9 904.14 37 0.98 41% 87 0.80 ± 0.05 

SRS-10 899.23 48 1.31 56% 117 1.01 ± 0.05 

SRS-11 1212.12 52 1.43 61% 127 2.24 ± 0.05 

SRS-14A 1095.85 46 1.24 53% 110 1.99 ± 0.05 

SRS-14B 1115.96 48 1.31 56% 117 1.82 ± 0.05 

SRS-14C 1149.69 50 1.35 57% 120 1.50 ± 0.05 

SRS-15 815.08 32 0.83 35% 74 2.10 ± 0.05 

SRS-17 967.32 41 1.09 46% 97 0.70 ± 0.05 

SRS-18 960.61 42 1.13 48% 100 1.35 ± 0.05 

SRS-19 1154.89 53 1.46 62% 130 2.10 ± 0.05 

SRS-20 782.77 32 0.83 35% 74 1.25 ± 0.05 

SRS-21 912.74 23 0.56 24% 50 0.80 ± 0.05 
 

In Figure 4.3, cumulative precipitation was plotted versus the elevation of SRS locations 

(Table 4.1). It is clear in the figure that precipitation increased with elevation. This agrees with 

previous literature results that indicate that the rainfall rate in the Yucca Mountain is higher than 

that in the Amargosa Desert. This will increase the chances of surface- runoff on the mountain 

sides. 
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Prior to the sampling process the chemical parameters were ordered based on their 

importance in this study (Table 4.2). Table 4.2 includes all the required information to deal with 

the samples during sampling, storage, and shipping based on the standard methods for the 

examination of water and wastewater (Clescerl et al., 2000). When limited amounts of water are 

available, samples are allocated according to the priority list.  

 

Figure 4.3: The relationship between the cumulated rain gauges precipitation and runoff 
sampler’s elevation. 

According to the calculated results (Table 4.1) that were obtained after the February 10-

18, 2009 storm events, the estimated water volume in the washed sand samplers was sufficient to 

analyze the first six priorities in Table 4.2, and very little water could be pumped from the 

alluvial sand samplers insufficient to do any analysis. We decided to collect the samples during 

the period of February 24-28, 2009, after sufficient precipitation had occurred to provide 

adequate sample size for chemical analysis. 
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The sampling session included all the SRSs that were installed. Samples were collected 

from each of the devices for the laboratory analyses listed in Table 4.2, in order listed under the 

priority column. Subsequent to arrival at each location the cap was removed from the tube, and 

the peristaltic pump was attached where the direction of flow was from bottom to top. The first 

25 ml of sample was purged. After purging was complete, the requested water samples were 

collected in the specified order (Clescerl et al., 2000). Prior to collecting samples requiring 

filtering from each sampling location, a clean piece of silicone tubing was installed on the 

peristaltic pump along with a new large-capacity 0.45 micron filter on the discharge end of the 

tubing based on the standard methods for the examination of water and wastewater (Clescerl et 

al., 2000). After sampling was completed, the remaining water (if any) from the SRS was purged 

to provide space for collection during the next runoff event.  

Table 4.2: Sample Collection in Order of Priority, Storage, and Shipping Information. 

Analyte 
Priority 

Sample Type 
Filter 

(Yes/No) 
Fill Level 

Preservati
ve 

Typical 
Bottle Size 

(ml) 

Bottle 
Type3 

Type of Storage Shipping Instructions

1 pH, EC,TDS, Temp. No 30 ml None 50 HDPE Analyzed in field None 
2 Alkalinity, Anions Yes Fill completely None 250 HDPE refrigerate Ship with Cold Packs
3 Metals, Cations Yes Fill completely HNO3 250 HDPE refrigerate None 
4 N-NH3,NO3-NO2,total P Yes To the neck H2SO4 250 HDPE refrigerate Ship with Cold Packs

5 
Stable Isotope Ratio Analysis 
of Oxygen and Hydrogen in 
Water 

 
No 

 
To the neck None 25 HDPE refrigerate 

 
None 

6 

Stable Isotope Ratio Analysis 
of Carbon in Total Dissolved 
Inorganic Carbon; 
Radiocarbon (C-14) 

 
No 

To the neck NaOH 1,000 HDPE refrigerate 

Ship with Cold Packs, 
Tape Seal Around 

Cap 

7 Tritium1 No To the neck None 250 A. Glass refrigerate Wrap in Bubble Wrap
8 Remaining Volume in RSD2 No NA None NA HDPE refrigerate Ship with Cold Packs

1Tritium analysis requires a detection limit of 1 TU and shall only be collected from the washed 
sand buckets, 2If water remains in SRS, the remaining volume shall be collected and analyzed as 
specified, 3Sample bottles shall be of the appropriate size/type and contain preservatives as 
specified by the analytical laboratory. 
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Table 4.3 summarizes the first priority results that were obtained after the end of the 

sampling process. All the natural alluvial samplers failed to produce water, all the water in the 

alluvial samplers is bound by the alluvium and failed to gravity drain. In contrast, all the washed 

sand samplers had stored water in different amounts, where the maximum amount was in the 

sampler that installed in site SRS-11, 2.24 liter, and the minimum amount was in the samplers at 

sites SRS-8A1 and SRS-17, 0.70 liter (Table 4.1). The first priority for all collected samples was 

done in the field (Table 4.3). During the sampling process we noted that the water in all the rain 

gauges in site locations had evaporated. Surface-runoff samples were analyzed for the major 

anions and cations by ACZ Laboratories, Inc.  

Table 4.3: First Priority Results of Surface-Runoff Sampling. 

 Washed Sand Filled Bucket 
Location  Date Time 24H Water Amount (Liter) pH Temp. °C EC (µS/cm) TDS (ppm) 

SRS-6A1 2/25/09 1625 1.45 ± 0.05 6.57 19.20 148.9 75.2 

SRS-6B1 2/25/09 1535 2.00 ± 0.05 6.88 24.40 86.4 43.4 

SRS-7A1 2/26/09 1010 1.55 ± 0.05 6.54 20.40 136.6 68.8 

SRS-7B1 2/26/09 1102 1.82 ± 0.05 7.30 20.80 422.0 213.0 

SRS-8A12 2/26/09 1209 0.70 ± 0.05 6.54 23.20 141.3 71.10 

SRS-8A21 2/26/09 1240 0.97 ± 0.05 6.60 23.20 158.5 79.8 

SRS-8B1 2/26/09 1136 1.30 ± 0.05 6.77 23.00 178.5 90.5 

SRS-91 2/26/09 1520 0.80 ± 0.05 6.70 14.40 173.1 86.3 

SRS-101 2/26/09 1459 1.01 ± 0.05 6.62 21.80 146.6 74.1 

SRS-111 2/25/09 1425 2.24 ± 0.05 6.55 23.60 68.7 34.7 

SRS-14A1 2/27/09 1106 1.99 ± 0.05 6.65 14.10 114.4 58.9 

SRS-14B1 2/27/09 1136 1.82 ± 0.05 6.88 14.60 131.2 65.9 

SRS-14C1 2/25/09 1320 1.50 ± 0.05 6.77 32.40 77.0 38.9 

SRS-151 2/25/09 1012 2.10 ± 0.05 6.47 21.20 75.2 74.1 

SRS-171 2/27/09 1002 0.70 ± 0.05 6.71 17.90 118.4 59.3 

SRS-181 2/27/09 1035 1.35 ± 0.05 6.86 16.70 131.3 65.6 

SRS-191 2/27/09 1207 2.10 ± 0.05 6.63 19.70 113.7 57.8 

SRS-201 2/26/09 1353 1.25 ± 0.05 6.65 20.00 174.5 87.9 

SRS-211  2/26/09 1640 0.80 ± 0.05 6.36 12.40 172.8 84.7 
1Silica sand saturated, 2Silica sand saturated but there was no enough water for tritium analysis.  
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Figure 4.4 shows an interesting match between the average major anions and cations for 

groundwater in green line (triangle symbol) and surface-runoff in blue line (circle symbol), 

where the average precipitation major anions and cations in red line (square symbol) has a 

different trend. Groundwater chemistry data used herein were obtained from the NWRPO 

website as of March 2003 (NWRPO, 2008) and a Los Alamos National Laboratory report 

(LANL, 2007), whereas the precipitation chemistry data were taken from Stetzenbach (1994) and 

Meijer (2002). Long-term monitoring of these parameters in addition to the multiple analytical 

methods and infiltration modeling that will be applied may clarify the infiltration and 

groundwater recharge chemistry in the Amargosa Desert Region. 

 

Figure 4.4: Average concentration of major anion and cations of groundwater, surface-runoff, 
and rainfall. 
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4.6 CONCLUSIONS 

Studies of Amargosa Desert regional groundwater indicate that infiltration of surface-

runoff occurs in the valleys subsequent to runoff-producing storms and this infiltration represents 

a large portion of the groundwater recharge. Sampling of surface-runoff in a desert environment 

from ephemeral arroyos is complicated by a number of practical concerns. Surface-runoff events 

are uncommon, sometimes separated by gaps of more than a year, and difficult to forecast in 

advance. 

This study presents a modification to the lysimeter called "Surface-Runoff Sampler 

(SRS)" designed to provide a stronger collection surface, more efficient connections for sample 

collection, and to measure particularly the first flush of runoff. In the absent of runoff a SRS acts 

as lysimeter. SRS design has the advantages of low cost, low maintenance, and being long lived. 

Disadvantages are that it captures both precipitation and runoff and requires manual pumping. 

The SRS design proved its ability to resist the arid weather conditions and capture surface-

runoff.   

The sampling processes included surface-runoff, precipitation, and sediment samples. 

The sampling results indicate that there is a high similarity between groundwater and surface- 

runoff chemistry, and this suggests that surface-runoff is a main source of groundwater recharge 

especially in the ephemeral arroyos. Moreover, the hydrological model that was built and the 

forecasting program proved their ability in providing an initial estimate of the precipitation rate 

in the study area and the amount of water accumulated in the SRSs. 

Further sample collection, statistical analysis, and infiltration modeling are required to 

achieve the main goal of this study which is to better understand processes controlling 

groundwater recharge, and thus the sustainable yield of groundwater in Nye County. 
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ABSTRACT 

Accurate estimates of groundwater recharge are necessary components for understanding 

long-term sustainability of groundwater resources and predictions of groundwater flow rates and 

flow directions. Amargosa Desert regional groundwater studies show that the surface runoff 

infiltration occur in the arroyos following runoff producing storms, and this infiltration is 

considered to be a major source of groundwater recharge. The present study attempts to 

investigate how water chemistry evolves during the surface runoff and infiltration processes, in 

the Amargosa Desert region. In this ongoing study, sixty surface runoff samplers (SRS) were 

installed at thirty different locations in the Amargosa Desert’s major arroyos to capture the 

surface runoff water. The sampling process included sediment, precipitation, and runoff water 

samples. In total, 176 runoff, 182 sediment, and 45 precipitation samples were collected between 
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January, 2009 and January, 2011. Analysis of chloride and the stable isotopes of water show 

substantial overlap of values with underlying groundwater consistent with the concept that 

infiltration of surface runoff is a major contributor to groundwater recharge in the study area. 

Groundwater ion concentrations represent a large collection of infiltration events occurring over 

time, and an exact match with surface runoff samples is unlikely. The SRS design proved its 

ability to function in arid weather conditions and capture surface-runoff. Further sample 

collection, statistical analysis, and infiltration modeling will be required to fully describe the 

evolution of water chemistry between infiltration and old groundwater. 

5.1 INTRODUCTION 

The climate, geology, hydrology and chemistry of the Amargosa Desert vicinity have 

been extensively studied by many agencies and researchers. These studies indicate that 

groundwater recharge occurs from infiltration of stream-flow in the ephemeral arroyos and 

infiltration of precipitation and runoff on the mountain ranges. Water may infiltrate from melting 

snowpack in the mountains primarily on volcanic or carbonate rocks or adjacent to the mountains 

from streams flowing over alluvium (fans and channels) (Faunt et al., 2004). Groundwater moves 

through permeable zones under the influence of hydraulic gradients from areas of recharge to 

areas of discharge in the regional system. Water quality studies of precipitation, surface water, 

and groundwater isotopic and common ion concentrations, in addition to the computer 

simulation of the groundwater system in the vicinity of the Amargosa Desert (Claassen, 1985; 

White and Chuma, 1987; Benson and Klieforth, 1989; Patterson and Oliver, 2004; USGS, 2004; 

Savard, 1998, 1996, 1995, 1994; Savard and Beck, 1994) have concluded recharge water is 

entering the groundwater system north of Yucca Mountain and have determined that recharges 

from Fortymile Wash, Oasis Valley, and Amargosa River is a significant source of groundwater. 
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Groundwater in the Amargosa Desert occurs in several interconnected, complex 

groundwater flow systems (Faunt et al., 2004), and this flow field is influenced by complex 

geologic structures created by regional faulting and fracturing that can create conduits in the 

carbonate rocks or barriers to flow (Faunt et al., 2004). The water moves along relatively shallow 

and localized flow paths that are superimposed on deeper, regional flow paths (Faunt et al., 

2004). The groundwater below Amargosa Desert and in the surrounding region flows generally 

south toward discharge areas in the southern Amargosa Desert and Death Valley (SNL, 2008; 

Wilson et al., 2001).  

The primary sources of groundwater recharge to the regional system are infiltration on 

Oasis Valley, and Timber Mountain to the north (high mountain ranges) and infiltration on the 

ephemeral arroyos (Fortymile Wash, Beaty Wash, and Amargosa River) and its tributaries 

(Figure 1), this infiltration is the precipitation that is not lost to evapotranspiration, runoff, or 

change in the amount held in the soil or rock, and makes it into the unsaturated zone flow 

system. Recharge in the immediate Amargosa Desert vicinity is low, consisting of water 

reaching Fortymile Wash as well as precipitation that infiltrates into the subsurface (SNL, 2008; 

Wilson et al., 2001). Direct recharge from precipitation is estimated to be less than five 

millimeters per year. In the saturated zone, downward flow through the tufts is believed to be of 

low quantity, less than ten centimeters per year (Montazer and Wilson, 1984; Matuska and Hess, 

1989). Water also enters the regional flow system as through flow from adjoining groundwater 

basins, predominantly from the north, west, and east, but the amount of water coming into the 

system laterally is estimated to be relatively small (roughly ten percent) in comparison with that 

coming in as recharge from the surface (EPA, 2001).  
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Near Yucca Mountain and in areas immediately to the south, vertical gradients are 

dominantly upward from the carbonate-rock aquifer into the intermediate system and flow is 

toward discharge areas to the south and southwest. Groundwater in the southern Amargosa 

Desert may either flow through fractures in the southeastern end of the Funeral Mountains and 

discharge in the Furnace Creek area or flow southward and discharge at Alkali Flat (Franklin 

Playa), and Ash Meadows (Faunt et al., 2004). 

5.2 PREVIOUS STUDIES 

Water samples from the western Yucca Mountain facies contain elevated Na+, HCO3
-, 

SO4
2-, F-, U, and B as compared to water from either the eastern Yucca Mountain or Fortymile 

Wash facies (Patterson and Oliver, 2004; USGS, 2004), while Ca2+ decreases, relative to the 

eastern section (Blankennagel and Weir, 1973).This may be due to longer flowpaths in the 

western section which allow more water/rock interaction and hydrothermal alteration of older 

volcanic rocks. Secondary mineralization believed to have formed under closed conditions 

(Matuska and Hess, 1989; Moncure et al., 1981). Water samples from the eastern Yucca 

Mountain and Fortymile Wash facies are similar except that water from the eastern Yucca 

Mountain facies contains slightly higher Na+ and HCO3
- and water from the Fortymile Wash 

facies contains higher Mg2+ and K+. Also, water from the Eastern Yucca Mountain facies 

contains higher 234U/238U ratios than that of any other facies (Patterson and Oliver, 2004; USGS, 

2004). Water samples from the Bare Mountain and Amargosa River facies are distinguished by 

higher concentrations of SO4
2-, HCO3

-, and U (Patterson and Oliver, 2004; USGS, 2004). Water 

from the Amargosa River facies contains higher concentrations of B, Na+, and Li than water 

from the Bare Mountain facies (Patterson and Oliver, 2004; USGS, 2004). The eastern Amargosa 

River facies and the southern Amargosa Desert are the least distinct because of mixing of water 
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from Fortymile Wash, and Jackass Flats which are the suspected source areas (Patterson and 

Oliver, 2004; USGS, 2004). 

Winograd and Thordarson (1975) described the groundwater in the southern Amargosa 

Desert as a mixed type, which graded into a (Na+K) HCO3-mixed type to the west. They first 

suggested the flow path from Pahute Mesa to Oasis Valley to Amargosa Desert, and this path 

shows an increase of K-montmorillonite, K-feldspar and Ca-montmorillonite precipitation along 

the flow paths. They explained this by either the thermodynamics of the system being most 

conducive for K+ and Ca2+ ion exchange within the montmorillonites, or an increase in Ca2+ to 

the system through weathering of carbonate detritus or inflow from a carbonate aquifer. For the 

area of Oasis Valley and Amargosa Desert, both of these are likely to be factors in controlling 

the dominance of K and Ca minerals.  

Claassen (1985) divides the water chemistry in the Amargosa Desert into three groups: 

volcanic, carbonate and mixed groundwaters. He found that the north-central part of Amargosa 

Desert has the lowest values of Na+, Ca2+, HCO3
- and SO4

2-, with ion concentrations increasing 

sharply to the east and west. This coincides with the presence of highly permeable sands and 

gravels within the center of the Amargosa Desert. Amargosa Desert has been modeled as a 

system that is closed to atmospheric CO2 (Claassen, 1985; White and Chuma, 1987) because 

Pco2 decreases along the flow path. Assuming cooler recharge conditions during Pleistocene 

time, Claassen (1985) used δ13C, δ2H and δ18O to support his hypothesis that water was 

recharged to the valley fill primarily through runoff infiltration and overland flow from 

Pleistocene age. Studies of the southern Amargosa Desert (Eberl et al., 1982; Khoury et al., 

1982; Papke, 1972) indicate that the mineralogy itself is likely to be a factor in controlling the 

dominance of K+, Mg2+ and Ca2+ minerals, and it appeares to be controlled with respect to 



 89

montmorillonites, illites, feldspars, quartz polymorphs, chlorite, and deposits of sepiolite, 

dolomite, and calcite. Bish (1988) noted that sodium is the dominant alkaline exchangeable 

cation in the shallow smectites, whereas deeper smectites contain subequal Na+, K+ and Ca2+.  

White (1979) found that evapotranspiration causes total dissolved solids (TDS) increase, 

calcium increases due to CaCO3 input from carbonate rocks, and potassium and fluoride. He also 

found that in water containing moderate amounts of Mg2+, the principal alteration product is 

montmorillonite, Mg2+ is deficient, but Na+ and K+ were present, zeolites such as clinoptilolite, 

mordenite, analcime and chabasite would form. 

Kerrisk (1987) described six active processes that may control groundwater chemistry at 

Amargosa Desert, which are: physical transport of dissolved species with water; rock-water 

interactions; ion exchange; gas dissolutions; mixing of different water compositions; and 

evaporation. The ground water in the tufts is primarily a Na/HCO3-type: Na = 65-95 % of cations 

and HCO3 = 80 % of anions with sub-equal Cl and SO4 (Ogard and Kerrisk, 1984; Matuska and 

Hess, 1989). Mineralogical studies of the Yucca Mountain groundwater (Matuska and Hess, 

1989; Broxton et al., 1986, 1987; Al-Qudah et al., 2011, 2010, 2008) indicate that the Yucca 

Mountain groundwater is supersaturated with respect to montmorillonites, illites, chlorite, 

feldspars, albite, and talc. The ground water is undersaturated with respect to analcime, 

anhydrite, chrysotile, dolomite, fluorite, gypsum, halite, quartz, sepiolite, and calcite. The eastern 

side of Yucca Mountain is considered a calcic rich suite, and the western side an alkali rich suite, 

with a potassic rich suite in the northern end.  

Potentiometric heads and hydrochemical data (EPA, 2001) indicate that the Alkali Flat 

(also known as the Franklin Lake Playa), located in the southern end of the Amargosa Desert is a 

major discharge area for the alluvial aquifer system. Estimated discharge at Alkali Flat is about 
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12.33E+6 m3 per year. Discharge at the playa occurs primarily through evapotranspiration, the 

principal component of which is bare-soil evaporation (EPA, 2001). Some groundwater may 

flow beneath the mountain at the south end of the playa and continue southward (EPA, 2001). 

Regional water table maps of the alluvial aquifer (EPA, 2001) also suggest that a portion of the 

flow in the alluvial aquifer may be moving southwest through the abutting carbonate rocks of the 

Funeral Mountains, and discharging into Death Valley. 

Groundwater in Amargosa Desert is recharged in part by infiltration of precipitation 

within the tributary drainage area, but the most is supplied by groundwater underflow through 

the bed rocks (Walker and Eakin, 1963). Using hydrogeologic data and interpretations presented 

in Winograd and Thordarson (1975), Winograd (1981) calculated potential infiltration rates on 

the order of 2 mm/yr through alluvium at the Nevada Test Site (NTS) where average annual 

precipitation is about 120 mm/yr. Scott et al. (1983) estimated net infiltration rates in the Jackass 

Flats basin on the order of 6 mm/yr with average precipitation rates 200 mm/yr, meaning that net 

infiltration rates counted 3 percent of the average precipitation. Montazer and Wilson (1984) 

reviewed various approaches that could be used to obtain estimates of net infiltration, including 

regional recharge techniques, water-budget studies, and analyses of geothermal heat flux, with 

estimating the average annual precipitation at Amargosa Desert to be 150 mm/yr; they concluded 

that 0.5 to 4.5 mm/yr becomes net infiltration. Using chloride mass balance approach (CMB), 

based on approximately 50 years of measurement, CRWMS M&O (2000) gives a net infiltration 

rate of 7 to 14 mm/yr plotted against an average precipitation rate of 170 mm/yr.  

Flint et al. (2001a, 2001b) presented the processes governing net infiltration in the 

Amargosa Desert as the distribution and timing of precipitation, the physical properties of the 

surface soils and bedrock, and the components controlling evapotranspiration. He noted that the 
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most net infiltration occurs from ridge tops and side slopes where the soils are thinner and the 

fractured bedrock allows rapid penetration; net infiltration is negligible in deep soils and 

alluvium, except in large channels that are fed by large volumes of runoff during extreme 

precipitation events. Flint et al. (2001a, 2001b) reported the average net infiltration rates in the 

Amargosa Desert as an order of 5-10 mm/yr, with an average precipitation of 170 mm/yr, 

placing the net infiltration estimate for the Amargosa Desert at 3-6 percent of average 

precipitation.  

In 2002, Flint et al. described the various recharge-estimation methods applied at 

Amargosa Desert vicinity, identifying the strengths and limitations of each approach. These 

methods included water-balance techniques, calculations using Darcy’s law, a soil physics 

method applied to neutron-hole water-content data, inverse modeling of thermal profiles, 

chloride mass balance, atmospheric radionuclides, and empirical approaches. The results of these 

methods are useful for defining upper boundary conditions, evaluating hydrologic parameter 

values, and calibrating and testing the models. The complex factors at Amargosa Desert vicinity 

(i.e., variable precipitation, topography, and soil depth; and a thick, layered, unsaturated zone 

with highly variable properties, including fractures and faults) result in spatially and temporally 

variable infiltration and recharge rates ranged from less than 1 to about 12 mm/yr by an average 

of 5 mm/yr, which would be about 1 percent to 7 percent of average precipitation. However, the 

authors point out that, under steady-state conditions, net infiltration at the surface becomes 

recharge at the water table. 

Bagtzoglou (2003) estimated the net infiltration rates in the Amargosa Desert to be 8.2 

mm/yr, using the perched water chemistry, based on the presence of Carbon-14 found in perched 

water. Calcite abundance studies of calcite mineral coatings on rock fractures provide an 



 92

indication of net infiltration rates, since these coatings form as infiltrating water evaporates. 

Model analyses indicate a range of net infiltration values from 2 to 20 mm/yr with a mean net 

infiltration rate of 5.92 mm/yr (Bechtel SAIC Company LLC, 2004). 

In addition to the net infiltration rate that forms by the precipitation part, Rush (1970) 

estimated average annual total recharge (from precipitation and underflow of groundwater) and 

discharge for the Ash Meadows (southern Amargosa Desert) regional system on the order of 

33,000 and 17,000 acre- feet, respectively, and for the Pahute Mesa regional system these 

estimates are 11,000 and 9,000 acre-feet, respectively. He estimated the precipitation rate from 

127 to 508 mm/yr by an average of 279 mm/yr. According to Blankennagel and Weir (1970), the 

estimated average annual total recharge to Pahute Mesa groundwater system is on the order of 

8000 acre-feet. Walker and Eakin (1963) estimated the average annual total recharge to the 

groundwater of Amargosa Desert and Ash Meadows on the order of 24,000 acre-ft. of this 

amount 17,000 acre-feet are dicharged by the springes and evaporation, and 7000 acre-feet is 

potentially available for pumping from groundwater in Amargosa Desert. 

Woolhiser et al. (2000) estimated the average annual infiltration into the ephemeral-

stream channels of Solitario Canyon attributed to surface runoff under current climate 

conditions. he measured inflows and outflows of individual channel reaches to estimate the 

quantity of water infiltrating into channels during runoff, and the results indicate significant 

runoff and infiltration events in one year with a very low runoff and infiltration rates, where the 

mean annual runoff rate was in the range 0.38-1.51 mm/yr and the mean annual channel 

infiltration was in the range 0.8-0.57 mm/yr, whereas in 2006, he found the runoff rate in the 

range of 0.38-3.59 mm/yr. (USGS, 2001; Liu et al., 2003; SNL, 2008) have estimated the net 

infiltration rate in the vicinity of Amargosa Desert on the order of 7.8, 0.73-10.57, and 0.4-12 
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mm/yr, respectively. Moreover, (Savard, 1994; Liu et al., 2003) have estimated the average 

annual recharge in the Amargosa Desert on the order of 27,200, and 2156-177,323 m3/yr. 

Savargd (1996) estimated the groundwater recharge rate for four reaches of Fortymile wash and 

he found it as 64300, 27000, 16400, and 1100 m3/yr for Amargosa Desert, Fortymile Canyon, 

lower Jackass Flats, and upper Jackass Flats, respectively. Lopes and Evetts (2004) estimated the 

average annual precipitation and the groundwater recharge in different basins at Amargosa 

Desert and they found it as (30.1; 1.09) for Yucca Flat, (5.2; 0.17) for Rock Valley, (56.0; 2.11) 

for Forymile Canyon, (34.7; 1.04) for Oasis Valley, (17.5; 0.58) for Crater Flat, and (47.8, 0.80) 

mm/yr for Amargosa Desert. 

This study explores the relationship between rainfall-runoff and groundwater chemistry, 

during flood events in the Amargosa Desert Region, Nevada, and presents an evidence of 

runoff’s chemical signature on the infiltration and groundwater recharge. Moreover, it gives an 

estimate of the net infiltration in the Amargosa Desert.  

5.3 DESCRIPTION OF THE STUDY AREA 

The Amargosa Desert (Figure 5.1) is located in the southern portion of Nye County in 

south central Nevada, within the Great Basin, and is part of the Death Valley groundwater basin. 

The Funeral Mountains separate the Amargosa Desert from Death Valley to the southwest, and a 

series of mountain ranges bound the north and east extents of the desert. The Amargosa River is 

a major drainage component (over 8,047 km2) of the unique closed-basin, hydrologic regime 

known as the Great Basin. This river system begins in the Oasis Valley, turns southeast to run 

through the Amargosa Desert, continues until it turns northwest, and terminates in Death Valley 

from its southeast extension. As a result of a dry, semi-arid, continental climate, the Amargosa 

River and its tributaries are ephemeral streams that are dry most of the time except in a few 
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Fortymile Wash originates between Timber Mountain and Shoshone Mountain. Fortymile 

Wash is an ephemeral drainage, flows southward along the east side of Yucca Mountain, and 

fans out in the northern part of the Amargosa Desert just north of Highway 95. Near U.S. 

Highway 95, the Fortymile Wash channel changes from being moderately confined to several 

distributary channels that are poorly confined. This poorly-defined, distributary drainage pattern 

persists downstream to its confluence with the Amargosa River. Yucca Mountain is located on 

federal land in southern Nevada, north of the Amargosa Desert, approximately 160 km northwest 

of Las Vegas, in the Basin and Range province of the western United States, within a zone 

between the Mojave Desert and the southern boundary of the Great Basin Desert, and it's part of 

the Amargosa River drainage basin which is the major tributary drainage area to the Death 

Valley. The present climate in the Amargosa Desert region is considered arid to semiarid, with 

average annual precipitation ranging from less than 130 millimeters (mm) at lower elevations to 

more than 280 mm at higher elevations, and the average annual precipitation is considered as 170 

mm/yr (DOE-OCRWM, 2006; Flint et al., 2001a, 2001b, 2002). From above, we note that net 

infiltration at Amargosa Desert is a small fraction of average annual precipitation, representing 

between about 1 percent and about 14 percent by an average annual of 7 percent, meaning that, 

on average, between 1 and 20 mm/yr infiltrates into Amargosa Desert, in addition, precipitation 

estimates for a single area can vary by a factor of 2 and as much as 4; recharge estimates for a 

single area can vary by as much as a factor of 5. 

5.4 METHODS 

The methodology of this research included site selection criteria, runoff sampler design 

construction and field emplacement, and sample analysis criteria as described in the previous 
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chapter (chapter 4) in detail. This chapter will be focused on the chemical analysis results of 

precipitation, sediment, surface runoff, and groundwater in the Amargosa Desert Region. 

5.4.1 Runoff samplers 

In total, sixty surface runoff samplers (SRS) were installed at thirty different locations in 

the major arroyos in the Amargosa Desert region (Figure5.1) to collect surface runoff water in 

order to measure the chemical characteristics of runoff water that has contacted and leached 

some of the top soil, which believed to be an important source of groundwater recharge in the 

area. The samplers were placed at locations in surface-runoff channels where water is likely to 

pool and where sufficient depth of sediment facilitates digging a hole for emplacement. To the 

extent possible, samplers were placed in low gradient (depositional) portions of the arroyo to 

minimize washing out during storms. Two surface runoff samplers were installed at each 

location, one was filled with silica sand (WSB), and the other was filled by natural alluvium 

(NAB) (silt and sand) from the arroyo. The silica sand was washed by deionized water before 

use to minimize its conductivity to around 0.1 (µS/cm) and to avoid any type of contamination. 

Table 5.1 below shows the surface runoff sampler locations taken by Trimble Geo XH 

instrument (latitude, longitude, elevation, and azimuth direction from T-posts), location 

descriptions, the distance from the T-post to the WSB and NAB, and the distance between the 

WSB and NAB. The Amargosa Desert region has been divided into five sub-regions based upon 

elevation as follows: southern Amargosa Desert region around Ash Meadows and Franklin Playa 

and includes (SRS-23 and SRS-22) within the elevation of 622 to 707 m, and an average of 661 

m; Fortymile Wash includes (SRS-6A, 6A-2, 6B, 6B-2, 7A, 7B, 8A1, 8A2, 8B, 15, 16-ALT, and 

SRS-29) within the elevation of 761 to 840 m, and an average of 801 m; Amargosa River region 

include (SRS-20, 25, 30, and SRS-31) and the elevation ranged between 763 and 888 m, by an 



 97

average of 804 m; Rock Valley region lays between the elevations of 875 and 913 m, by an 

average of 895 m and includes (SRS-20 and SRS-24); finally the western side of Yucca 

Mountain includes (SRS-17, 18, 14A, 14B, 14C, 19, 11, 10, 9, and SRS-26), and the elevation 

ranged between 811 and 1212 m, by an average of 1034 m. 

Table 5.1: Surface Runoff Sampler Locations-Trimble Geo XH 

Location Site description Latitude Longitude 
Elevation 

(m) 

Distance 
from T-
Post (m) 

Azimuth 
from T-

Post 
(degree) 

Distance 
between 
WSB & 

NAB (m) 
SAD a 
SRS-23 
SRS-24 

Upper Mud and Alkali Flat, 0.6 km upgradient from Ash Meadows Rd. 
Rock Valley Wash-upper reaches, 1 km up-gradient of Hwy 95 

36.309037319 
36.634803151 

-116.402756598 
-116.311495180 

621.67 
874.54 

2.77 
7.71 

65 
19 

2.06 
1.80 

FMW b 
SRS-6A 
SRS-6A-2 
SRS-6B 
SRS-6B-2 
SRS-7A 
SRS-7B 
SRS-8A1 
SRS-8A2 
SRS-8B 
SRS-15 
SRS-16ALT 
SRS-29 
 

South of the pole line road, middle channel of FMW 
South of the pole line road, western channel of FMW 
South of the pole line road, western channel of FMW 
South of the pole line road, middle channel of FMW 
South of Hwy 95, eastern channel of FMW 
South of Hwy 95, western channel of FMW 
Near well 32P, western branch of eastern channel of FMW 
Near well 32P, eastern branch of eastern channel of FMW 
Near well 32P, western channel of FMW 
Topopah Wash 122 m up-gradient from the AVSTP f  
Topopah Wash, 3 km up-gradient from the AVSTP on NTS border 
Wash draining the west side of the Striped Hills, 0.43 km down-gradient 
from Hwy 95 

36.669884789 
36.670662204 
36.669902196 
36.670385047 
36.655717428 
36.659707845 
36.620807944 
36.617246160 
36.640598904 
36.645637040 
36.669927984 
36.636918495 
 

-116.440446042 
-116.440473076 
-116.446060897 
-116.445332186 
-116.451272695 
-116.468407770 
-116.489959924 
-116.479075702 
-116.507470820 
-116.385009152 
-116.375764967 
-116.377439493 
 

819.64 
821.66 
817.29 
818.32 
802.29 
797.76 
760.61 
762.56 
764.49 
814.25 
838.72 
806.64 
 

7.22 
9.08 
6.20 
7.56 
9.36 
7.65 
4.18 
4.97 
7.41 
3.96 
3.66 
6.61 
 

279 
273 
303 
10 
318 
347 
326-328 
207 
313 
247 
345 
139 
 

1.98 
1.95 
1.86 
2.91 
1.97 
1.97 
1.97 
2.06 
1.97 
NA 
1.97 
1.83 
 

AR c 
SRS-20 
SRS-25 
SRS-30 
SRS-31 

Amargosa River channel, 5.3 km northwest of Big Dune 
Amargosa River channel, 1.14 km northwest of Ashton site 
Amargosa River channel, 13.1 km northwest of Ashton site  
Amargosa River channel, 2.7 km northwest of Big Dune 

36.678956027 
36.712673211 
36.796441044 
36.653799795 

-116.651490013 
-116.677893541 
-116.755968586 
-116.624380220 

782.29 
807.00 
886.35 
763.09 

4.00 
8.47 
4.21 
4.08 

256 
18 
245 
219 

1.75 
1.95 
NA 
NA 

RV d 
SRS-21 
SRS-22 
 

Rock Valley Wash-upper reaches, 
Tributary of  Rock Valley Wash ( lower reaches), 0.21 km east of Mecca 
Rd E.  

36.660132021 
36.520761742 
 

-116.293688407 
-116.380661262 
 

912.67 
705.27 
 

3.70 
3.96 
 

116 
88 
 

1.94 
2.10 
 

YMW e 
SRS-9 
SRS-10 
SRS-11 
SRS-14A 
SRS-14B 
SRS-14C 
SRS-17 
 
SRS-18 
SRS-19 
SRS-26 g 

Area of increased probability of runoff southeast of well 13P 
Area of increased probability of runoff southeast of well 13P 
Solitario Canyon 
Tributary of Windy Wash 
Tributary of Windy Wash 
Tributary of Windy Wash 
Tributary to the main drainage off the east side of Bare Mtn, 1.2 km north 
west of Red Cone. 
Tributary of Windy Wash, 0.76 km northeast of Red Cone. 
Lower Solitario Canyon off of southwest slope of Yucca Mtn. 
Crater Flats area, 1.78 km up-gradient from Hwy 95 

36.741220594 
36.738436531 
36.830812004 
36.813775589 
36.817201763 
36.821732073 
36.805724488 
 
36.796034630 
36.819590891 
36.708375582 

-116.511189890 
-116.513821958 
-116.480775917 
-116.510107406 
-116.503903275 
-116.495381817 
-116.590881279 
 
-116.563370966 
-116.489665165 
-116.556875720 

903.86 
898.70 
1210.78 
1094.32 
1114.50 
1148.40 
966.19 
 
960.40 
1153.81 
810.50 

3.46 
5.07 
7.32 
5.27 
6.52 
8.23 
5.49 
 
4.02 
13.87 
5.76 

145 
103 
110 
65 
133 
118 
305 
 
300 
140 
121 

2.13 
1.69 
2.04 
1.90 
2.00 
1.91 
1.97 
 
1.91 
1.97 
1.81 

a southern Amargosa Desert; b Fortymile Wash; c Amargosa River; d Rock Valley; e western side 
of Yucca Mountain; f Amargosa Valley Science and Technology Park; g surface runoff sampler. 
 

The samples collected from these sites included sediment, precipitation, and surface 

runoff. Sediment samples were collected from each site at the time of the surface runoff samplers 
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installation, and also shortly after four storm events occurring in February 2009, September 

2009, January 2010, and December 2010 (Table 2); following these storms, SRS samples were 

collected from the WSBs at each location,. Additionally, after the January 2010 precipitation 

event, samples were collected from rain gauges at each site along with a NAB runoff sample 

from some locations. In total, 167 SRS-WSB, 9 SRS-NAB, 182 sediment, and 45 precipitation 

samples were collected during January, 2009 and January, 2011 (Table 2).  

5.4.2 Sediment sampling 

Sediment samples were separated into two subsamples; the first was oven dried to 

determine the sample’s water percent content by weight, and the second one was used to obtain 

soil lechates. An extraction dilution of 3.76 of deionized water per 2 kg of soil was used with a 

correction for the sample’s original water content. Additional sediment samples were collected to 

study the physical properties of the soil based on the ASTM standards (ASTM D2216-98, D422-

63-98, D4542-95) (Table 5.3).  

5.4.3 Samples chemical analysis 

Runoff and precipitation samples were collected, preserved, and shipped based on the 

standards methods for the examination of water and wastewater (Clescerl, 2000); runoff, 

precipitation, and soil extracted samples were analyzed based on the same standards (Clescerl, 

2000) by using inductively coupled plasma mass spectrometry (ICP-MS) and ion-exchange 

chromatography (IEC) machines, in addition to the volumetric titration, for major cations and 

anion (Cl-, HCO3
-, SO4

2-, Ca2+, Mg2+, K+, and Na+), in addition to the trace elements and water 

stable isotopes.  
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5.4.4 Nye County groundwater wells 

Groundwater chemistry data for 89 groundwater wells around the runoff samplers (Figure 

5.1) were obtained from Nye County Nuclear Waste Repository Project Office (NWRPO) 

(NWRPO, 2008) and Los Alamos National Laboratory (LANL, 2007) and compiled into a single 

database. The chemical data includes Cl-, SO4
2-, total alkalinity, Na+, Ca2+, K+, Mg2+, TDS, F-, 

SiO2, δ
2H, δ18O, and some of trace elements. 

5.4.5 Statistical analysis 

StatisticaTM9 (StatSoft Inc., 1984-2010) is used to simplify the interpretation of the 

samples chemical properties by applying the descriptive statistics, box plots, and the analysis of 

variance test on the chemical constituents for each sample type as follows. 

5.4.5.1 Descriptive statistics 

Descriptive statistics (Tables 5.5-5.8) (StatSoft Inc., 1984-2010) are calculated separately 

for each chemical constituent per sample type (precipitation, sediment, runoff, and groundwater) 

and per all site locations together (i.e., Amargosa Desert area), and they provide such basic 

information as the mean, median, minimum and maximum values, as well as different measures 

of variation (the standard deviation, and the standard error). Table 5.A1, in Appendix 5.A, shows 

the median concentrations of the chemical constituents of each sample type (precipitation, 

sediment, runoff, and groundwater) normalized by sample chloride for all site locations together 

(Amargosa Desert Area). 

5.4.5.2 Box plots 

In box plots (StatSoft Inc., 1984-2010) ranges of values of selected variables (the 

chemical constituents) are plotted separately for groups of cases defined by values of a 
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categorical (grouping) variable (precipitation, sediment, runoff, and groundwater) per sample 

locations (southern Amargosa Desert, Fortymile Wash, Amargosa River, western side of Yucca 

Mountain, and Rock Valley). The central tendency (median) and range or variation statistics 

(quartiles) are computed for each group of cases, and the selected values are presented in graphs 

(Figures 5.4-5.35). In Appendix 5.A, Figures 5.A1-5.A34 show the box plots of the chemical 

constituents of each sample type (precipitation, sediment, runoff, and groundwater) normalized 

by sample chloride for all site locations together (Amargosa Desert area). 

5.4.5.3 Analysis of variance (ANOVA) 

In general, the purpose of analysis of variance (ANOVA) is to test for significant 

differences between means (StatSoft Inc., 1984-2010). The statistical significance of a result is 

an estimated measure of the degree to which it is true (StatSoft Inc., 1984-2010). The value of 

the p-level represents a decreasing index of the reliability of a result (StatSoft Inc., 1984-2010). 

The higher the p-level, the less believe that the observed relation between variables in the sample 

is a reliable indicator of the relation between the respective variables in the population (StatSoft 

Inc., 1984-2010). Specifically, the p-level represents the probability of error that is involved in 

accepting the observed result as valid (StatSoft Inc., 1984-2010). For example, a p-level of .05 

(i.e., 1/20) indicates that there is a 5% probability that the relation between the variables found in 

the observed sample is a stroke of luck. In many areas of research, the p-level of 0.05 is 

customarily treated as a borderline acceptable error level (StatSoft Inc., 1984-2010). Results that 

are significant at the p ≤ 0.01 level are commonly considered statistically significant, and p ≤ 

0.005 or p ≤ 0.001 levels are often called highly significant; whereas the results that yield p-level 

> 0.05 are considered statistically insignificant. Table 5.9 shows ANOVA tests for significant 

differences between means. 



 101

5.4.6 Piper diagram 

The Piper diagram allows comparison of a large number of samples on the same figure, 

shows clustering of samples and water type, used to classify water as hydrochemical facies, and 

the mixing between water types can be identified on a Piper diagram (Drever, 1997). 

The idea of hydrogeochemical facies is the classification of waters according to the 

relative proportions of major ions (Drever, 1997). Water plotting in the upper half of both the 

cation and anion triangles would be referred to as magnesium sulfate-type water (Drever, 1997). 

Water plotting in the lower left hand side of the cation triangle and the lower right hand side of 

the anion triangle would be calcium chloride-type water (Drever, 1997). If both cation and anion 

compositions plot in the middle of the two triangles, then the waters would be referred to as 

mixed cation-mixed anion-types (Drever, 1997). If a water plots near the middle of one of the 

edges of the triangles, then one might refer to, e.g., magnesium-calcium sulfate water (Drever, 

1997). 

If waters are the result of mixing of two different end member waters, then the 

compositions of the waters should plot along a straight line in each of the fields of the diagram. 

On the other hand, if the compositions do not plot along a straight line on the Piper diagram, then 

the waters cannot be related by simple mixing between two end members. If the waters do plot 

along a straight line, this is not definitive proof that mixing did occur, but it is strongly 

suggestive and other tests can be designed to prove mixing (Drever, 1997). 

To represent the water composition on a piper diagram, major cations and anion 

(calcium, magnesium, sodium, potassium, sulfate, chloride, carbonate, and bicarbonate) are 

taken for precipitation, sediment, runoff, and groundwater in equivalents per liter unit, and used 

as an input to the GW-Chart software (version 1.23.4.0) (Winston, 2000). GW-Chart is a 
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program for creating specialized graphs used in groundwater studies. It incorporates the 

functionality of two previous programs, Budgeteer and Hydrograph Extractor (Winston, 2000). 

Figure 5.31 shows Piper diagram for definition of precipitation, sediment, surface runoff, and 

groundwater chemical types. Figures (5.A35-5.A39), in Appendix 5.A, show the Piper diagram 

for each site location individually.  

5.4.7 Hydrochemical modeling 

The computer program PHREEQC (Parkhurst and Appelo, 1999; Parkhurst, 1995; 

Parkhurst et al., 1982) is capable of describing a variety of geochemical processes in 

groundwater systems, and simulating a variety of surface runoff and groundwater reactions and 

processes that can explain the water chemistry’s evolution. The program was used to calculate 

thermodynamic equilibrium saturation indices (SI) for mineral species, based on anion and 

cation mean concentrations, temperature, pH, fluoride, bromide, phosphate, total nitrogen, 

aluminum, iron, copper, barium, lithium, strontium, zinc, lead, manganese, boron, and silicate in 

addition to the ion exchanges couples of precipitation, sediment leached, surface runoff, and 

groundwater in the Amargosa Desert region. 

The SI is defined as the logarithm of the ratio of the ion activity product (IAP) of the 

component ions of the solid in solution to the solubility product (K) for the solid [SI = log 

(IAP/K)]. If the SI is zero, the water composition reflects the solubility equilibrium with respect 

to the mineral phase. A negative value indicates undersaturation and a positive value indicates 

supersaturation. 

The PHREEQC output shows many potential models that explain the evolution, and the 

best model was chosen based on the actual mean differences between the different types of 

sample provided. 
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5.4.8 Estimation of groundwater effective recharge 

Groundwater in Amargosa Desert is recharged in part by infiltration of precipitation 

within the tributary drainage area, but the most is supplied by groundwater underflow through 

the bed rocks (Walker and Eakin, 1963). Many researchers (Winograd and Thordarson, 1975; 

Winograd 1981; Scott et al., 1983, Montazer and Wilson, 1984; CRWMS M&O, 2000; Flint et 

al., 2001a, 2001b, 2002; Bagtzoglou, 2003; Bechtel SAIC Company LLC, 2004; Woolhiser et 

al., 2000; USGS, 2004; Liu et al., 2003; SNL, 2008) have studied the groundwater net infiltration 

from the precipitation (as a percent of average annual precipitation) by using various approaches 

that could lead to estimate of net infiltration, including water-balance techniques, calculations 

using Darcy’s law, a soil physics method applied to neutron-hole water-content data, inverse 

modeling of thermal profiles,  atmospheric radionuclides, perched water chemistry, based on the 

presence of Carbon-14 found in perched water, calcite abundance studies of calcite mineral 

coatings on rock fractures, and empirical approaches. They found that net infiltration at 

Amargosa Desert is a small fraction of average annual precipitation, representing between about 

1 percent and about 14 percent by an average annual of 7 percent, meaning that, on average, 

between 1 and 20 mm/yr of average annual precipitation (which is estimated on the order of 170 

mm/yr) infiltrates into Amargosa Desert. In addition, precipitation estimates for a single area can 

vary by a factor of 2 and as much as 4; recharge estimates for a single area can vary by as much 

as a factor of 5. 

In this study chloride balance approach is used to estimate the groundwater recharge that 

come from the precipitation part. Chloride ion is highly soluble, conservative, and not 

substantially taken up by vegetation, and because of that is considered a suitable tracer for 
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determining the movement of water. In this case the groundwater recharge is given by (Kumar, 

1977; Chandra, 1979): ࡾ = .ࢗࡱ																																																																							࡯/ࡰ ૞. ૚	
where, 

R: groundwater recharges (mm/yr) 

D: wet and dry chloride deposition (mg/m2/yr), and 

C: concentration of chloride in groundwater (mg/l) 

This method is convenient, fast and cheap. The chief drawback is the uncertainty in the 

determination of the wet and dry deposition. The principle source of chloride in ground water is 

from the atmosphere. In this case the recharge can be expressed as (Kumar, 1977; Chandra, 

1979): 

ࡾ = ࡼ × .ࢗࡱ																														(࢘ࢋ࢚ࢇ࢝ࢊ࢔࢛࢕࢘ࢍ	ࢌ࢕	࢒࡯࢔࢕࢏࢚ࢇ࢚࢏࢖࢏ࢉࢋ࢘࢖	ࢌ࢕	࢒࡯) ૞. ૛ 

where, 

R: groundwater recharges (mm/yr) and  

P: average precipitation rate (mm/yr) 

The chloride method must be treated with caution. Recharge under conditions of 

extremely high rainfall with a long recurrence period, is likely to influence the chloride 

concentration of ground water to a high degree resulting in an over estimate of the mean annual 

recharge. 
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5.5 RESULTS AND DISCUSSION 

5.5.1 Surface runoff and precipitation sampling 

Table 5.2 below shows the elevation of site locations, in addition to the measured amount 

of water accumulated in the rain gauges, WSBs, and NABs in each site location after four storm 

events occurred in the study area during February, 2009; September, 2009; and January, 2010; 

and December 2010. 

The rain gauges are simple collectors that are open to the atmosphere. The simplicity of 

the samplers (low cost rain gauges) was dictated by costs and logistics (potential for vandalism). 

Rain gauge readings and chemistry were subject to unknown amounts of evaporation prior to 

collection so the readings should not be equated with precipitation amount or initial chemistry. 

Because of the dilute nature of the solutions, even subsequent to evaporation, the precipitation 

water chemistry should provide accurate measurements of a) relative abundance of different 

elements (e.g., when normalized relative to chloride) and b) an estimate of total mass loading of 

the elements. 

The rain gauges included both wet-fall and dry-fall since the last time they were emptied 

and rinsed. All rain gauges collected precipitation during the storm events. The distribution of 

precipitation is related to the altitude and latitude of the land surface (Table 5.2), the higher 

mountains in the Northern part of the Amargosa Desert are receive the largest amounts of 

precipitation, and the valley the least, most of the precipitation falls in the winter, but some 

precipitation occurs in the summer as thunderstorms, and this is not true for surface runoff 

samplers, and maybe it is because the variation in the soil physical properties Also, the amount 

of precipitation cumulated in the rain gauges increases as December, 2010 storm > January, 2010 

storm > February, 2009 storm > September, 2009 storm. Amargosa River’s rain gauges produced 
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the least amount of water in February 2009 and January 2010 storms, by the amount of 22.9 mm 

at SRS-21 in February 2009, and 31.7 mm at SRS-31 in January 2010. In the other hand, western 

side of Yucca Mountain’s rain gauges produced the greatest amount of water in the same storm 

events, by the amount of 53.3 mm at SRS-19 in February 2009, and 72.4 mm at SRS-14C in 

January 2010. 

Table 5.2: The Measured Amount of Water Cumulated in the Rain Gauges, WSB, and NAB in 
each Site Location during February, 2009; September, 2009; January, 2010; and 

December, 2010. 

 
Storm event, Feb. 2009 Storm event, Sep. 2009 Storm event, Jan. 2010 Storm event, Dec. 2010 

Location Elevation (m) 
RG g 
(mm) 

WSB 
(l) 

NAB 
(l) 

RG 
(mm) 

WSB 
(l) 

NAB 
(l) 

RG 
(mm) 

WSB 
(l) 

NAB 
(l) 

RG 
(mm) 

WSB 
(l) NAB (l) 

SAD a 
SRS-23b 
SRS-22 

621.7 
705.3 

N/A 
N/A 

N/A 
N/A 

N/A 
N/A 

0 
0 

0.1 
0.1 

0 
0 

34.3 
47 

3.1 
1.8 

3.1 
0 

10.7 
73.7 

1.8 
1.3 

1.8 
0.8 

FMW c 
SRS-8A1 
SRS-8A2 
SRS-8B 
SRS-7B 
SRS-7A 
SRS-29 
SRS-15 
SRS-6B 
SRS-6B-2 
SRS-6A 
SRS-6A-2 
SRS-16ALT 

760.6 
762.6 
764.5 
797.8 
802.3 
806.6 
814.2 
817.3 
818.3 
819.6 
821.7 
838.7 

26.7 
27.2 
30.5 
29.2 
26.7 
N/A 
31.7 
29.8 
N/A 
33 
N/A 
N/A 

0.6 
1 
1.3 
1.8 
1.5 
N/A 
2.1 
2 
N/A 
1.4 
N/A 
N/A 

0 
0 
0 
0 
0 
N/A 
0 
0 
N/A 
0 
N/A 
N/A 

  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  

40.6 
43.2 
39.4 
41.9 
39.8 
44.4 
40.6 
40.6 
47 
44.4 
47 
43.2 

0.1 
2.3 
0.4 
1.9 
0.9 
1.5 
0.3 
2 
0.8 
0.6 
0.9 
0.8 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0.3 
0 
0 

  
57.1 
  
53.3 
  
  
  
  
  
  
  
  

  
1.8 
  
1.8 
  
  
  
  
  
  
  
  

  
0.8 
  
0 
  
  
  
  
  
  
  
  

AR d 
SRS-31 
SRS-20 
SRS-25 
SRS-30 

763.1 
782.3 
807 
886.3 

N/A 
31.7 
N/A 
N/A 

N/A 
1.2 
N/A 
N/A 

N/A 
0 
N/A 
N/A 

  
0 
0 
  

  
1.3 
0.3 
  

  
0 
0 
  

31.7 
38.1 
39.4 
49.5 

0.3 
0 
0.9 
0.3 

0 
0.1 
0.3 
0 

  
  
  
  

  
  
  
  

  
  
  
  

RV e 
SRS-24 
SRS-21 

874.5 
912.8 

N/A 
22.9 

N/A 
0.8 

N/A 
0 

  
  

  
  

  
  

43.2 
48.3 

0.5 
0 

0 
0 

  
  

  
  

  
  

YMW f 
SRS-26 
SRS-10 
SRS-9 
SRS-18 
SRS-17 
SRS-14A 
SRS-14B 
SRS-14C 
SRS-19 
SRS-11 

810.5 
898.7 
903.9 
960.4 
966.2 
1094.3 
1114.5 
1148.4 
1153.8 
1210.8 

N/A 
36.8 
36.8 
41.9 
40.6 
45.7 
48.3 
49.5 
53.3 
N/A 

N/A 
1 
0.8 
1.3 
0.7 
2 
1.8 
1.5 
2.1 
N/A 

N/A 
0 
0 
0 
0 
0 
0 
0 
0 
N/A 

  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  

39.4 
40.6 
40.6 
47 
35.6 
48.3 
50.8 
72.4 
63.5 
66 

0.3 
1 
0 
1.9 
1.9 
0 
3.1 
1.9 
1.9 
2.2 

0 
0 
0 
0 
0 
0 
0.9 
0 
0.3 
0 

  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  

a southern Amargosa Desert; b surface runoff sampler; c Fortymile Wash; d Amargosa River; 
eRock Valley; f western side of Yucca Mountain; g rain gauge. 
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In February 2009, 18 locations were provided runoff water from WSBs, and the sample 

volumes vary between 600 ml from site SRS-8A1 (Fortymaile Wash) with rain gauge reading 

27.6 mm and 2100 ml from sites SRS-15 (Fortymile Wash) and SRS-19 (western side of Yucca 

Mountain) with rain gauge readings 31.7 and 53.3 mm respectively. The NABs did not produce 

any sample during this period. In September 2009, the rain gauges were empty (dried by 

evaporation), but 100, 100, 1300, and 300 ml samples were collected from southern Amargosa 

Desert WSBs (sites SRS-23 and SRS-22) and Amargosa River WSBs (sites SRS-20 and SRS-25) 

respectively; the NABs did not yield any samples. In January 2010, runoff samples were 

collected from 26 location’s WSBs; SRS-14B (western side of Yucca Mountain) and SRS-23 

(southern Amargosa Desert) WSBs produced the greatest amount of water (3100 ml) and SRS-

8A1 (Fortymile Wash) WSB produced the least amount of water (100ml). In the same time, the 

NABs produced water in six locations with greatest amount of 3100 ml at SRS-23 and the least 

amount of 100 ml at SRS-20 (Amargosa River). In December 2010, SRS-23, SRS-22, SRS-8A2, 

and SRS-7B WSBs produced water by amount of 1800, 1300, 1800, and 1800 ml respectively; 

SRS-23, SRS-22, and SRS-7B NABs produced water by amount of 1800, 800, and 800 ml 

respectively; the rain gauges in SRS-23, SRS-22, SRS-8A2, and SRS-7B measured 10.7, 73.7, 

57.1, and 53.3 mm of rain water.  

Table 5.2 shows the relation between the amount water cumulated in the rain gauges and 

the amount of water accumulated in the surface runoff samplers for the same location in four 

different patterns. SRS-8B, SRS-18, and SRS-14C present the first pattern, where the measured 

rain gauges increased from February, 2009 to January, 2010 and the volume of water 

accumulated in the WSBs increased for the same events, whereas the NABs failed to produce 

water. SRS-7B, SRS-6B, and SRS-10 present the second pattern, where the measured rain 
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5.5.2 Sediment sampling 

In order to understand the characteristics of location sediments that could control the 

infiltration of runoff, sediment samples from each location were analyzed based on ASTM 

standards (D422-63-07; D854-06; D1140-06; D2216-05, D4542-95) for the following physical 

properties: gravimetric water contents, hygroscopic water contents, bulk density, solid density, 

porosity, particle size distribution, uniformity coefficient, and the soil textural term (Table 5.3). 

Table 5.3: Site Locations Soil Physical Properties.  

Location 

Gravimetric 
water content 

% 

Bulk 
density 
(g/ml) 

Hygroscopic 
water content 

% 

Solid 
density 
(g/ml) Porosity 

Gravel 
total % 

Sand 
total % Silt % 

Clay 
% 

Uniformity. 
Coefficient 

(Cu=d60/d10) 

Soil textural term 

SAD a 
SRS-22 b 
SRS-23 

0.01 
0.2 

1.42 
1.22 

0.46 
0.28 

2.6 
2.6 

0.45 
0.53 

12.48 
24.26 

84.25 
56.59 

3.13 
18.68 

0.13 
0.47 

5.28 
40 

Sand 
Silty Sand (Loamy sand) 

FMW c 
SRS-15 
SRS-7B 
SRS-7A 
SRS-8B 
SRS-8A1 
SRS-8A2 
SRS-6A 
SRS-6B 
SRS-6A-2 
SRS-16ALT 
SRS-6B-2 
SRS-29 

2.25 
2.77 
6.84 
1.01 
1.59 
1.33 
2.84 
1.85 
0.54 
0.02 
9.3 
5.07 

1.4 
1.17 
1.2 
1.41 
1.37 
1.42 
1.41 
1.37 
1.4 
1.43 
1.41 
1.31 

0.35 
1.31 
1.14 
0.46 
0.45 
0.51 
0.48 
0.5 
0.55 
0.4 
0.55 
0.65 

2.65 
2.6 
2.5 
2.55 
2.5 
2.55 
2.55 
2.55 
2.6 
2.65 
2.6 
2.65 

0.47 
0.55 
0.52 
0.45 
0.45 
0.44 
0.45 
0.46 
0.46 
0.46 
0.46 
0.5 

13.29 
0 
0 
21.21 
28.54 
38.81 
15.39 
37.52 
34.5 
19.31 
34.5 
17.68 

83.74 
8.9 
38.19 
71.12 
62.42 
58.98 
82.14 
57.97 
61.5 
77.73 
61.46 
70.09 

2.91 
67.02 
48.9 
7.33 
8.72 
2.16 
2.42 
4.38 
3.9 
2.85 
3.88 
11.21 

0.06 
24.1 
12.9 
0.33 
0.32 
0.06 
0.05 
0.12 
0.15 
0.11 
0.15 
1.02 

7.65 
17.5 
37.5 
5.83 
23.89 
9.4 
8 
18.42 
13.2 
8.46 
13.17 
52 

Sand 
Clay-Silt (Silt loam) 
Sandy-Silt (Loam) 
Sand 
Sand 
Sand 
Sand 
Sand 
Sand 
Sand 
Sand 
Sand (to Loamy sand) 

AR d 
SRS-30 
SRS-31 
SRS-25 
SRS-20 

7.77 
8.84 
0.01 
0.92 

1.41 
1.43 
1.38 
1.21 

0.58 
0.5 
0.61 
0.5 

2.55 
2.55 
2.6 
2.6 

0.44 
0.44 
0.47 
0.53 

13.42 
27.85 
27.35 
41.48 

83.1 
67.91 
67.66 
40.55 

3.42 
4.13 
4.83 
17.1 

0.06 
0.1 
0.16 
0.87 

5.36 
11 
11.36 
90.91 

Sand 
Sand 
Sand 
Silty Sand (Loamy sand) 

RV e 
SRS-21 
SRS-24 

3.26 
0.45 

1.39 
1.39 

0.4 
0.45 

2.65 
2.65 

0.48 
0.47 

24.91 
16.02 

71.87 
74.82 

3.12 
8.86 

0.11 
0.31 

11.05 
81.25 

Sand 
Sand 

YMW f 
SRS-10 
SRS-9 
SRS-17 
SRS-18 
SRS-14A 
SRS-14B 
SRS-14C 
SRS-11 
SRS-19 
SRS-22 
SRS-23 
SRS-26 

2.04 
1.68 
2.35 
3.34 
2.92 
2.74 
3.07 
1.13 
2.03 
0.01 
0.2 
0.65 

1.42 
1.41 
1.41 
1.41 
1.41 
1.42 
1.39 
1.38 
1.41 
1.42 
1.22 
1.42 

0.48 
0.38 
0.33 
0.35 
0.44 
0.26 
0.48 
0.38 
0.3 
0.46 
0.28 
0.41 

2.55 
2.6 
2.55 
2.55 
2.55 
2.55 
2.6 
2.55 
2.55 
2.6 
2.6 
2.6 

0.44 
0.46 
0.45 
0.45 
0.45 
0.44 
0.47 
0.46 
0.45 
0.45 
0.53 
0.45 

31.27 
29.1 
10.8 
43.89 
51.89 
47.4 
53.23 
42.23 
36.89 
12.48 
24.26 
29.18 

63.83 
66.88 
84.32 
53.64 
40.78 
50.3 
42.55 
52.18 
59.42 
84.25 
56.59 
67.97 

4.75 
3.94 
4.79 
2.4 
7.08 
2.22 
4.09 
5.37 
3.58 
3.13 
18.68 
2.77 

0.15 
0.09 
0.09 
0.06 
0.25 
0.08 
0.13 
0.22 
0.12 
0.13 
0.47 
0.09 

15 
11.11 
10 
18.57 
105.26 
17.14 
43.33 
35.71 
26.67 
5.28 
40 
12 

Sand 
Sand 
Sand 
Sand 
Sand 
Sand 
Sand 
Sand 
Sand 
Sand 
Silty Sand (Loamy sand) 
Sand 

a southern Amargosa Desert; b surface runoff sampler; c Fortymile Wash; d Amargosa River; 
eRock Valley; f western side of Yucca Mountain. 
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The gravimetric water contents ranged between 0.01% (at SRS-22 and SRS-25) and 

9.30% (at SRS-6B-2) by an average of 2.6%; hygroscopic water contents ranged between 0.26% 

(at SRS-14B) and 1.31% (at SRS-7B) by an average of 0.5%, and this mean that the southern 

Amargosa Desert, Amargosa River, and western side of Yucca Mountain have the least water 

contents percent, whereas Fortymile Wash has the greatest water contents percent. The least 

value of soil bulk density exists in Fortymile Wash at sites SRS-7B and SRS-7A by a value of 

1.17 g/ml, and the greatest value exists in Fortymile Wash at site SRS-16ALT and Amargosa 

River at site SRS-31 by a value of 1.43 g/ml, and the average of bulk density is 1.37 g/ml; the 

solid density ranged between 2.50 and 2.65% by an average of 2.58 g/ml, the least value exists in 

Fortymile Wash at sites SRS-7A and SRS-8A1, and the greatest value exists in Fortymile Wash 

at sites SRS-15, SRS-16ALT, and SRS-29; and Rock Valley at sites SRS-21 and SRS-24. 

It was found by (Woolhiser et al., 2006; Woolhiser et al., 2000) that the porosity of the 

Amargosa Desert’s sediment ranged between 0.34 and 0.39, whereas kilroy and Savard (1997) 

found it in the range of 0.41 and 0.42, but herein in this study (Table 5.3), the porosity ranged 

between 0.44 in Fortymile Wash (at SRS-8A2), western side of Yucca Mountain (at SRS-10 and 

14B), and Amargosa River (at SRS-30 and 31), and 0.55 in Fortymile Wash (at SRS-7B) by an 

average of 0.47. Furthermore (Woolhiser et al., 2006; Woolhiser et al., 2000) studied the soil 

particle size distribution in the Amargosa Desert and found that 60 percent of the soil is sand, 20 

percent is silt, 10 percent is gravel, and 10 percent is Clay. 

The analysis of sediment samples from the Amargosa Desert region shows that soil sand 

ranged between 9% in the Fortymile Wash (at SRS-7B) and 84% in the western side of Yucca 

Mountain (at SRS-17) and southern Amargosa Desert (at SRS-22) by an average of 62%, gravel 

distributed from nil in the Fortymile Wash (at SRS-7B and 7A) to 53% in the western side of 
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Yucca Mountain (at SRS-14C) by an average of 27%, silt soil distributed from 2.2%, in 

Fortymile Wash (at SRS-8A2) and western side of Yucca Mountain (at SRS-14B), to 67% in 

Fortymile Wash (at SRS-7B), by an average of 9%, whereas clay soil distributed from 0.05%, in 

Fortymile Wash (at SRS-15, 8A2, and 6A), western side of Yucca Mountain (at SRS-18), and 

Amargosa River (at SRS-30), to 24% in Fortymile Wash (at SRS-7B) by an average of 2%. 

Table 5.4 below shows the main soil characteristics as distributed per each location. 

Table 5.4: The Main Soil Characteristics as Distributed per each Location 

Location Surface runoff sampler site name Site description 
Fortymile Wash SRS-15 Greatest solid density; Least clay contents; Sandy soil textural.  

SRS-7B Greatest hygroscopic water contents; Least bulk density; Nil gravel 
contents; Least sand contents; Greatest silt contents; Greatest clay 
contents; Greatest porosity; Clay-silt (silt loam) textural. 

SRS-7A Least bulk density; Least solid density; Nil gavel contents; Sandy-
silt (silt loam) textural. 

SRS-8A1 Least solid density; Sand textural 

SRS-8A2 Least sand contents; Least silt contents; Least clay contents; Least 
porosity; Sand textural. 

SRS-6A Least clay contents; Sand textural. 

SRS-6B-2 Greatest gravimetric water contents; Sand textural. 

SRS-16ALT Greatest bulk density; Greatest solid density; Sand textural. 

SRS-29  Greatest solid density; Sand to loamy sand textural.  
SRS-6A-2, SRS-6B, SRS-8B. Sand textural. 

Western Side of Yucca Mountain SRS-17  Greatest sand contents; Sand textural. 
SRS-18  Least clay contents; Sand textural. 
SRS-14A  Greatest uniformity coefficient; Sand textural. 
SRS-14B Least hygroscopic water contents; least silt contents; least porosity; 

Sand textural. 
SRS-14C Greatest gravel contents; Sand textural. 
SRS-10 Least porosity; Sand textural. 
SRS-19, SRS-11, SRS-9, SRS-26 Sand textural. 

Amargosa River SRS-25 Least Gravimetric water contents; Sand textural. 
SRS-30 Least clay contents, least uniformity coefficient; least porosity; 

Sand textural. 
SRS-31 Greatest bulk density; least porosity; Sand textural. 
SRS-20 Silty-sand (loamy sand). 

Southern Amargosa Desert SRS-22 Least Gravimetric water contents; greatest sand contents; least 
uniformity coefficient; Sand textural. 

SRS-23 Silty-sand (loamy sand). 
Rock Valley SRS-21  Greatest solid density. Sand textural. 

SRS-24 Greatest solid density. Sand textural. 
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Sandy soil presents the main textural for twenty-five site locations, the advantages for 

this type of soil are: very rapid infiltration, usually oxidized and dry, and low runoff potential; 

whereas the disadvantages are: very low cation exchange capacity, very high hydraulic 

conductivity rate, low available water, and  little soil structure. Silty-sand (loamy sand) presents 

three site locations, the advantages for this type of soil are: high infiltration and low to medium 

runoff; the disadvantages are: low cation exchange capacity, moderate to high hydraulic 

conductivity rate, low to medium available water. Clay-silt (silt loam) presents one site location 

with the following advantages: Moderate infiltration, fair oxidation, moderate runoff potential, 

generally accessible, and good cation exchange capacity; and the disadvantages are: some 

crusting and fair to poor structure. Sandy-silt (loam) presents one site location with the 

advantages: moderate infiltration, fair oxidation, moderate runoff potential, generally accessible, 

good cation exchange capacity; and the disadvantage is: fair structure. 

5.5.3 Statistical analysis 

5.5.3.1 Descriptive statistics 

A summary of the precipitation, sediment, runoff, and groundwater chemical 

constituent’s descriptive statistics, and it is distribution within the site locations are given in 

Tables 5.5, 5.7, 5.8, and 5.9. 

Table 5.5 shows the descriptive statistics of the chemical constituents for 45 precipitation 

samples. The least values of precipitation’s TDS and chloride are 6.83 and 0.62 ppm originated 

in Amargosa River and Fortymile Wash; whereas the greatest values are 323.6 and 6.82 ppm 

originated in Rock Valley and southern Amargosa Desert, respectively. The precipitation’s TDS 

and chloride means and standard deviations respectively are: 48.6 ppm and 65.7, 2.7 ppm and 

1.7. Stetzenbach (1994) studied the precipitation chemistry in the vicinity of Yucca Mountain 
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from December, 1992 through March, 1993; Table 5.6 summarized Stetzenbach’s (1994) results. 

Comparing the chemical constituents concentration of the precipitation in Table 5.5 (results 

obtained by the current study) and Table 5.6 (results obtained by Stetzenbach), it is clear that 

Stetzenbach samples more diluted, and it seems that it was collected directly after the storm 

events. Moreover, chloride concentrations in precipitation (Tables 5.5, 5.6) indicate that the 

precipitation samples of this research have been evaporated by a factor of 11. 

Table 5.5: Summary of Precipitation Chemical Constituents (in mg/l, except otherwise 
indicated), and it is Distribution within the Site Locations.  

Precipitation, 45 samples 
Element Mean Median Minimum Maximum Std.Dev. Element distribution per location 
TDS 48.59 28.68 6.83 323.61 65.74 RV c >YMW d >FMW e >SAD f >AR g 
T. Alk as CaCO3

a 13.63 12.20 3.00 25.00 6.76 SAD>RV>YMW>AR>FMW 
Non car. Alk b % 57.45 59.09 26.63 75.16 10.37 AR>YMW>SAD>FMW>RV 
Cl - 2.71 2.13 0.62 6.82 1.68 SAD>YMW>RV>AR>FMW 
SO4 

2- 4.46 3.70 0.09 11.52 3.26 RV>YMW>FMW>SAD>AR 
Ca2+ 5.12 4.36 0.60 11.95 2.61 RV>SAD>YMW>FMW>AR 
Mg2+ 0.62 0.61 0.15 1.82 0.41 RV>YMW>FMW>SAD>AR 
K+ 0.78 0.70 0.04 1.91 0.46 RV>AR>SAD>YMW>FMW 
Na+ 1.61 1.27 0.40 3.90 0.96 SAD>YMW>RV>AR>FMW 
F- 0.34 0.18 0.05 1.30 0.34 SAD>YMW>FMW>AR>RV 
Br- 0.21 0.20 0.20 0.56 0.07 YMW>FMW>AR=RV=SAD 
Total B 0.01 0.01 0.01 0.09 0.02 FMW>YMW=AR=RV=SAD 
PO4

3- 0.70 0.30 0.10 2.00 0.66 YMW>RV>FMW>AR>SAD 
Total N  0.46 0.35 0.03 1.40 0.41 RV>SAD>AR>YMW>FMW 
NO3

- 2.04 1.56 0.13 6.16 1.79 RV>SAD>AR>YMW>FMW 
NH3  0.56 0.43 0.03 1.70 0.49 RV>SAD>AR>YMW>FMW 
Al3+ 0.02 0.01 0.004 0.05 0.01 RV>SAD>FMW>YMW>AR 
As3- 0.01 0.01 0.0002 0.02 0.005 RV>AR>FMW>YMW>SAD 
Total Fe 0.01 0.003 0.0003 0.06 0.01 RV>FMW>SAD>YMW>AR 
Total Cu 0.003 0.004 0.00008 0.01 0.003 YMW>FMW>RV>SAD=AR 
Ba2+ 0.01 0.01 0.003 0.03 0.01 YMW>SAD>RV>FMW>AR 
Cs+ 0.01 0.01 0.001 0.03 0.01 YMW>RV>SAD>FMW>AR 
Li+ 0.004 0.003 0.000003 0.03 0.01 AR>SAD>RV>YMW>FMW 
Total Mo 0.001 0.001 0.00001 0.01 0.002 RV>SAD>FMW=YMW=AR 
Sr2+ 0.04 0.04 0.01 0.15 0.03 RV>YMW>SAD>FMW>AR 
Rb+ 0.001 0.001 0.001 0.004 0.001 RV>YMW>FMW=AR=SAD 
Total U 0.001 0.0004 0.0001 0.005 0.001 AR>RV>SAD>YMW>FMW 
Total V 0.001 0.001 0.0002 0.01 0.001 RV>AR>YMW>FMW>SAD 
Zn2+ 0.01 0.01 0.001 0.05 0.01 RV>AR>FMW>SAD>YMW 
Total Mn 0.01 0.01 0.00005 0.05 0.01 RV>AR>FMW>YMW>SAD 
Ni2+  0.0004 0.0004 0.00001 0.001 0.0002 RV>FMW>AR>SAD>YMW 

a Total alkalinity as CaCO3; 
b non carbonate alkalinity; c Rock Valley; d western side of Yucca 

Mountain; e Fortymile Wash; f southern Amargosa Desert; g Amargosa River. 
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Table 5.6: Chemical Constituents of Precipitation in the Vicinity of Yucca Mountain during the 
period December, 1992 through March, 2010; Results obtained from Stetzenbach 

(1994). 

Element Mean Minimum Maximum Std.Dev. 

Mg2+ (ppm) 0.0225 0.003 0.073 0.01775 

Ca2+ (ppm) 0.22275 0.056 0.795 0.17025 

Na+ (ppm) 0.126 0.039 0.308 0.06475 

K+ (ppm) 0.046 0.012 0.203 0.0405 

F- (ppm) 0.069 0 0.398 0.06775 

Cl - (ppm) 0.25725 0.042 1.645 0.2525 

NO3
- (ppm) 2.203 0.326 23.624 3.42675 

SO4 
2- (ppm) 0.6545 0.122 2.333 0.4285 

Li+ (ppb) 0.14 0 0.6 0.3 

Total V (ppb) 0.1385 0.085 0.191 0.0305 

Total Mn (ppb) 1.36825 0.236 8.384 1.26875 

Ni2+ (ppb) 0.28525 0.007 0.948 0.15325 

As3- (ppb) 0.30925 0 0.886 0.31225 

Rb+ (ppb) 0.13 0 0.43 0.21 

Sr2+ (ppb) 1.5535 0.423 6.986 1.5305 

Cs+ (ppb) 0.019 0 0.072 0.0313333 

Ba2+ (ppb) 2.1335 0.633 5.326 1.01975 

Total Pb (ppb) 0.94275 0.259 2.056 0.55325 

Total U (ppb) 0.006 0 0.017 0.0076667 

Total Ti (ppb) 0.3375 0.16 1.54 0.2075 

Zn2+ (ppb) 0.07075 0.009 0.87 0.1005 

Total Mo (ppb) 0.064 0.02 0.15 0.02775 
 

In Table 5.7, the descriptive statistics of the chemical constituents for 182 sediment 

samples is presented. The least values of sediment’s TDS and chloride are 47.7 and 0.35 ppm 

originated in western side of Yucca Mountain and Fortymile Wash; whereas the greatest values 

are 1017.7 and 45 ppm originated in southern Amargosa Desert, the TDS and chloride means 

and standard deviations respectively are: 161.1ppm and 123.3, 1.98 ppm and 4.23. 
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Table 5.7: Summary of Sediment Chemical Constituents (in mg/l, except otherwise indicated), 
and it is Distribution within the Site Locations. 

Sediment, 182 samples 
Element Mean Median Minimum Maximum Std.Dev. Element distribution per location 
TDS 161.44 125.69 47.72 1017.70 123.31 SAD f >FMW e >RV c >AR g >YMW d 
T. Alk as CaCO3

a 156.31 136.14 35.46 892.18 100.12 SAD>FMW>AR>YMW>RV 
Non car. Alk b % 78.19 78.30 46.87 95.52 8.98 AR>FMW>SAD>RV>YMW 
Cl - 1.98 0.91 0.35 45.00 4.23 SAD>AR>RV>YMW>FMW 
SO4 

2- 6.25 2.46 0.21 88.67 11.65 SAD>AR>RV>FMW>YMW 
Ca2+ 33.76 24.48 4.58 252.50 30.20 SAD>RV>FMW>YMW>AR 
Mg2+ 2.19 1.69 0.18 25.16 2.65 SAD>FMW>YMW>RV>AR 
K+ 8.42 7.04 1.74 30.46 5.23 AR>SAD>FMW>RV>YMW 
Na+ 11.12 4.74 1.97 76.78 14.96 AR>SAD>FMW>YMW>RV 
F- 0.07 0.04 0.03 1.39 0.17 AR>SAD>RV>FMW>YMW 
Br- 1.66 0.14 0.14 35.78 5.76 AR>SAD>FMW>RV>YMW 
Total B 1.49 1.22 0.003 4.42 1.13 AR>FMW>YMW>RV>SAD 
PO4

3- 0.77 0.08 0.07 9.11 1.33 AR>SAD>FMW>YMW>RV 
Total N  1.34 0.90 0.09 13.82 1.73 AR>FMW>RV>SAD>YMW 
NO3

- 5.91 3.96 0.39 60.81 7.59 AR>FMW>RV>SAD>YMW 
NH3  1.64 1.10 0.11 16.86 2.11 AR>FMW>RV>SAD>YMW 
Al3+ 0.13 0.06 0.01 5.76 0.48 AR>RV>SAD>FMW>YMW 
As3- 0.01 0.01 0.0002 0.03 0.01 SAD>FMW>YMW>RV>AR 
Total Fe 0.12 0.05 0.0001 3.58 0.32 FMW>SAD>YMW>AR>RV 
Total Cu 0.06 0.05 0.0001 0.20 0.05 YMW>FMW>RV>SAD>AR 
Ba2+ 0.01 0.01 0.001 0.10 0.01 SAD>FMW>RV>YMW>AR 
Cs+ 0.01 0.01 0.0002 0.09 0.01 SAD>RV>FMW>YMW>AR 
Li+ 0.01 0.01 0.001 0.09 0.01 AR>SAD>FMW>YMW>RV 
Total Mo 0.001 0.0004 0.0003 0.01 0.001 AR>SAD>FMW>RV>YMW 
Sr2+ 0.12 0.09 0.01 0.92 0.11 SAD>RV>YMW>FMW>AR 
Rb+ 0.01 0.002 0.0003 0.08 0.02 AR>FMW>YMW>SAD>RV 
Total Ti  0.002 0.002 0.002 0.05 0.004 SAD>AR>RV>FMW>YMW 
Total U 0.001 0.00004 0.00003 0.01 0.002 SAD>FMW>AR>RV>YMW 
Total V 0.01 0.01 0.001 0.05 0.01 SAD>AR>FMW>RV>YMW 
Zn2+ 0.01 0.004 0.0001 0.25 0.02 SAD>RV>AR>FMW>YMW 
Total Mn 0.10 0.01 0.00001 3.95 0.39 YMW>SAD>FMW>AR>RV 
Ni2+  0.01 0.004 0.0002 0.05 0.01 SAD>AR>FMW>YMW>RV 
Total Pb 0.002 0.0004 0.0003 0.02 0.003 AR>SAD>FMW>YMW>RV 
Se2- 0.00004 0.00004 0.00003 0.00004 0.000002 SAD>AR>RV>FMW>YMW 

a Total alkalinity as CaCO3; 
b non carbonate alkalinity; c Rock Valley; d western side of Yucca 

Mountain; e Fortymile Wash; f southern Amargosa Desert; g Amargosa River. 
 

Tables 5.8 and 5.9 present the descriptive statistics of the chemical constituents for 167 

runoff samples and 89 groundwater wells and bore holes. Runoff least TDS and chloride values 

are 12 and 1.5 ppm, and it is originated in western side of Yucca Mountain and Fortymile Wash, 

respectively. Groundwater least TDS and chloride are originated in Fortymile Wash and 
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Amargosa River by values of 196.7 and 5.1 ppm. Runoff greatest TDS and chloride are 

originated in Rock Valley and southern Amargosa Desert by values of 969 and 67.54 ppm 

respectively. Groundwater greatest TDS and chloride values are 1132.3 and 79.10 ppm, and it is 

originated in Amargosa River. Runoff’s TDS and chloride means and standard deviations are: 

246.3 ppm and 250.54, 11.25 ppm and 12.87; whereas for groundwater it is: 423.5 ppm and 222, 

16.76 ppm and 15.8. 

Table 5.8: Summary of Runoff Chemical Constituents (in mg/l, except otherwise indicated), and 
it is Distribution within the Site Locations. 

Runoff, 167 samples 
Element Mean Median Minimum Maximum Std.Dev. Element distribution per location 
TDS 246.35 110 12 969 250.54 RV c >SAD f >AR g >FMW e >YMW d 
T. Alk as CaCO3

a 126.34 73 30 451 105.22 RV>AR>SAD>FMW>YMW 
Non car. Alk b % 63.90 66.96 23.33 89.03 17.77 AR>RV>FMW>SAD>YMW 
Cl - 11.25 8 1.50 67.54 12.87 SAD>AR>YMW>RV>FMW 
SO4 

2- 19.95 9.50 1.50 154.34 29.91 SAD>RV>YMW>AR>FMW 
Ca2+ 28.59 23.70 10.20 86.05 16.23 RV>AR>FMW>SAD>YMW 
Mg2+ 7.24 3.49 1.10 58.65 10.63 RV>YMW>FMW>AR>SAD 
K+ 11.65 6.30 3.10 41 10.66 RV>YMW>SAD>FMW>AR 
Na+ 27.15 7.90 0.69 179 39.25 SAD>RV>YMW>FMW>AR 
F- 0.24 0.20 0.05 1.20 0.27 RV>AR>FMW>SAD>YMW 
Br- 0.38 0.20 0.20 2.07 0.49 YMW>RV>AR>FMW>SAD 
Total B 0.25 0.13 0.005 3.92 0.69 SAD>RV>FMW>YMW>AR 
PO4

3- 1.38 0.20 0.10 17.48 3.54 RV>FMW>AR>YMW>SAD 
Total N  12.59 0.90 0.01 146 32.16 YMW>FMW>AR>SAD>RV 
NO3

- 6.00 2.01 0.02 44.30 9.95 YMW>FMW>SAD>AR>RV 
NH3  8.17 0.57 0.04 103 20.38 YMW>FMW>AR>SAD>RV 
Al3+ 0.38 0.07 0.02 8.23 1.47 RV>SAD>FMW>YMW>AR 
As3- 0.01 0.003 0.0002 0.08 0.01 RV>SAD>YMW>FMW>AR 
Total Fe 0.19 0.02 0.005 4.17 0.75 RV>FMW>SAD>AR>YMW 
Total Cu 0.01 0.003 0.0005 0.06 0.01 SAD>AR>FMW>YMW>RV 
Ba2+ 0.06 0.05 0.002 0.22 0.05 YMW>FMW>AR>SAD>RV 
Cs+ 0.06 0.04 0.0005 0.27 0.06 YMW>FMW>RV>AR>SAD 
Li+ 0.02 0.02 0.0005 0.11 0.02 SAD>FMW>AR>RV>YMW 
Total Mo 0.01 0.001 0.0005 0.17 0.03 RV>AR>YMW>FMW>SAD 
Sr2+ 0.15 0.13 0.005 0.40 0.10 FMW>YMW>AR>SAD>RV 
Rb+ 0.005 0.001 0.0005 0.03 0.01 RV>FMW>YMW>AR>SAD 
Total Ti  0.01 0.003 0.003 0.02 0.01 YMW>SAD>RV>FMW>AR 
Total U 0.003 0.001 0.00005 0.01 0.003 RV>FMW>SAD>AR>YMW 
Total V 0.01 0.001 0.0005 0.18 0.03 RV>FMW>YMW>SAD>AR 
Zn2+ 0.06 0.01 0.005 1.44 0.26 YMW>FMW>RV>SAD>AR 
Total Mn 0.16 0.02 0.001 3.01 0.54 YMW>SAD>FMW>RV>AR 
Ni2+  0.01 0.001 0.0005 0.03 0.01 FMW>YMW>RV>SAD>AR 
Total Pb 0.001 0.0001 0.00005 0.01 0.002 SAD>FMW>RV>YMW>AR 
Se2- 0.0004 0.0003 0.00005 0.002 0.0005 RV>YMW>FMW>SAD>AR 

a Total alkalinity as CaCO3; 
b non carbonate alkalinity; c Rock Valley; d western side of Yucca 

Mountain; e Fortymile Wash; f southern Amargosa Desert; g Amargosa River.   
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Table 5.9: Summary of Groundwater Chemical Constituents (in mg/l, except otherwise 
indicated), and it is Distribution within the Site Locations. 

Groundwater, 89 samples 
Element (ppm) Mean Median Minimum Maximum Std.Dev. Element distribution per location 
TDS 423.47 336.27 196.70 1132.30 221.89 AR g >SAD f >RV c >YMW d >FMW e 
T. Alk as CaCO3

a 183.39 152.55 81.19 790.62 100.41 AR>RV>SAD>YMW>FMW 
Non car. Alk b % 82.95 82.96 24.39 99.82 11.36 YMW>FMW>RV>SAD>AR 
Cl - 16.76 9.90 5.10 79.10 15.80 AR>SAD>RV>YMW>FMW 
SO4 

2- 71.76 34.70 5 644 81.66 AR>SAD>RV>FMW>YMW 
Ca2+ 25.20 20.80 0.15 158 23.15 AR>RV>ASD>FMW>YMW 
Mg2+ 7.90 2.70 0.01 86.90 12.16 AR>SAD>RV>FMW>YMW 
K+ 8.11 5.93 1 63.40 8.15 SAD>AR>RV>FMW>YMW 
Na+ 83.01 78.60 31.30 339 44.17 AR>SAD>RV>YMW>FMW 
F- 2.48 2.10 0.50 6.70 1.41 YMW>AR>SAD>RV>FMW 
Total B 0.08 0.01 0.01 0.90 0.15 AR>FMW>YMW>SAD>RV 
PO4

3- 0.15 0.10 0.01 1.26 0.19 AR>FMW>SAD>YMW>RV 
Total N  1.40 0.30 0.14 9.54 2.12 FMW>AR>YMW>SAD>RV 
NO3

- 0.62 0.50 0.05 2.17 0.34 FMW>SAD>YMW>RV>AR 
NH3  1.64 0.24 0.17 11.60 2.63 FMW>AR>YMW>SAD>RV 
Al3+ 0.12 0.05 0.001 5.58 0.59 FMW>YMW>AR>SAD>RV 
As3- 0.004 0.001 0.001 0.03 0.01 FMW>AR>YMW>SAD>RV 
Total Fe 0.32 0.01 0.01 19.74 2.11 AR>FMW>YMW>SAD>RV 
Total Cu 0.01 0.01 0.0004 0.33 0.03 YMW>FMW>AR>SAD>RV 
Ba2+ 0.01 0.002 0.002 0.26 0.03 FMW>AR>YMW>SAD>RV 
Li+ 0.05 0.001 0.001 0.64 0.12 FMW>AR>YMW>SAD>RV 
Total Mo 0.01 0.001 0.001 0.33 0.04 FMW>YMW>AR>SAD>RV 
Sr2+ 0.18 0.02 0.001 2.29 0.39 RV>AR>FMW>YMW>SAD 
Rb+ 0.01 0.001 0.001 0.20 0.02 AR>FMW>YMW>SAD>RV 
Total Ti  0.02 0.003 0.001 0.70 0.08 YMW>FMW>AR>SAD>RV 
Total U 0.001 0.0001 0.0001 0.01 0.002 AR>YMW>SAD>FMW>RV 
Total V 0.01 0.001 0.001 0.34 0.04 YMW>FMW>AR>SAD>RV 
Zn2+ 0.02 0.01 0.001 0.52 0.06 YMW>AR>FMW>SAD>RV 
Total Mn 0.02 0.003 0.003 0.38 0.07 AR>YMW>FMW>SAD>RV 
Ni2+  0.01 0.001 0.001 0.51 0.05 YMW>AR>FMW>SAD>RV 
Total Pb 0.001 0.0001 0.0001 0.05 0.01 AR>FMW>YMW>SAD>RV 
Se2- 0.001 0.0001 0.0001 0.03 0.003 AR>FMW>YMW>SAD>RV 

a Total alkalinity as CaCO3; 
b non-carbonate alkalinity; c Rock Valley; d western side of Yucca 

Mountain; e Fortymile Wash; f southern Amargosa Desert; g Amargosa River. 

5.5.3.2 Box plots 

Box plots (Figures 5.4 -5.30) are applied on the major ion concentrations, TDS, heavy 

metals, and nutrients after grouped by sample type (precipitation, sediment, runoff, and 

groundwater) and by site location (southern Amargosa Desert, Fortymile Wash, Amargosa River, 

Rock Valley, and western side of Yucca Mountain). Southern Amargosa Desert and Rock Valley 

have two site locations for each one, and the samples collected from these areas were not enough 
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to make successful comparison with other location. However, it is included with the box plot 

graphs below. 

Box plots of the different sample types per location show three potential clusters of the 

sample’s chemical constituents. First group presents the chemicals that have scavenged, where 

the chemical constituents concentrated in the precipitation is greater than that in runoff and 

sediment (i.e., precipitation > runoff > sediment). Second group presents the chemicals that have 

leached, and where the chemical constituents concentrated in the sediment is higher than that 

concentrated in the precipitation, whereas the concentrations in runoff is in the middle (i.e., 

sediment > runoff > precipitation). Finally, third group presents nutrients, where the chemical 

constituents that concentrated in the runoff samples is lower than that in sediment and 

precipitation samples (i.e., precipitation > sediment > runoff). 

Figure 5.4, shows significant evaporative concentration occurs between precipitation and 

groundwater. Chloride is a conservative ion and thus tracks evaporative concentration of waters. 

Also, Chloride is highly soluble and has few geologic sources, making it an excellent tracer of 

evaporative concentration. Concentrations of chloride are approximately similar in the runoff and 

groundwater in Fortymile Wash, western side of Yucca Mountain, and southern Amargosa 

Desert even when the data shows that the groundwater has higher salinity (TDS). The chloride 

trend can be described as groundwater ≈ runoff > sediment > precipitation or groundwater ≈ 

runoff > precipitation > sediment, when the sediment leached the chloride during the storm 

events. This is consistent with the hypothesis that infiltration of surface runoff from storms has 

been a dominant source of groundwater in this area. 

Figure (5.5) shows the box plots of uranium grouped by sample type and site location. 

Uranium presents group one (scavenged) in all locations. 
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Cesium (Figure 5.6) is scavenged in Amargosa River, western side of Yucca Mountain, 

and Rock Valley; it is strongly leached in Fortymile Wash, and it follows the nutrient group in 

the southern Amargosa Desert.  

TDS, alkalinity, and non-carbonate alkalinity (Figures 5.7-5.9) follow the leached group 

in all locations. TDS and alkalinity increase greatly between precipitation and sediment, 

decreasing between sediment and runoff, and then increasing between runoff and groundwater. 

Alkalinity trend may be caused by precipitation and dissolution equilibrium of calcium 

carbonate, carbonate rocks, and from silicate mineral weathering reactions, which increase both 

sodium and alkalinity, and this matches with White (1979). The non-carbonate alkalinity forms 

(40-65%), (74-92%), (50-75%), and (75-95%) from the total alkalinity in the precipitation, 

sediment, runoff, and groundwater, respectively. Increasing of non-carbonate alkalinity in the 

groundwater may be caused by the Na/HCO3 aquifer. The H2CO3 contributes H+, which attacks 

silicate minerals resulting in the release of cations (M+) and the formation of bicarbonate by the 

reaction: (ࢋ࢚ࢇࢉ࢏࢒࢏ࡿ	࢑ࢉ࢕࢘)(ࡹା) (૜ࡻ࡯૛ࡴ	+ → (ାࡴ)(࢑ࢉ࢕࢘	ࢋ࢚ࢇࢉ࢏࢒࢏ࡿ) ାࡹ+ .ࢗࡱ					૜ିࡻ࡯ࡴ+ ૞. ૜ 

Sodium (Figure 5.10) follows the leached group in the Amargosa River location, where, 

it increases in amount between precipitation and sediment, then decreases from sediment to 

runoff, and then increases again from runoff to groundwater. Sodium becomes strongly leached 

in the other locations, where it increases in amount between precipitation, sediment, runoff, and 

groundwater. Most of the alkalinity in the area’s groundwater is non-carbonate (Na+K)-HCO3, 

derived from weathering of silicate rocks rather than dissolution of carbonate rocks, and would 

account for this increase in sodium. Sodium also may originate as a result of ion exchange with 

calcium in infiltrating water. 
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Figure 5.11, shows the box plots of calcium concentrations grouped by sample type and 

site location. Calcium is increasing between precipitation and sediment in all locations; calcium 

is leached or strongly leached in all locations. It is increasing between sediment, runoff, and 

groundwater in the Amargosa River; increasing between sediment and runoff then decreasing 

between runoff and groundwater in Rock valley; it is almost the same in sediment and runoff, 

and then decreasing between sediment and groundwater in Fortymile Wash and western side of 

Yucca Mountain; decreasing between sediment and runoff and then increasing from runoff to 

groundwater in the southern Amargosa Desert. Weathering causes enrichment of calcium 

concentrations, in the form of CaCO3 originally derived from carbonate rocks along the flow 

paths.  

Figure 5.12, shows the box plots of magnesium in the different categories. Magnesium is 

strongly leached in all locations; it is increasing from precipitation to groundwater. Increasing of 

magnesium in the groundwater may be caused by the (Ca+Mg)-HCO3 carbonate aquifer. 

Figure 5.13, shows the box plots of potassium concentrations in the different categories, 

with potassium increasing greatly between the precipitation and sediment in all locations, it is 

decreasing slightly between sediment and runoff, and then again increasing slightly from the 

runoff to groundwater in the southern Amargosa Desert and Amargosa River following leached 

group; it is increasing from sediment to runoff then decreasing from runoff to groundwater in the 

western side of Yucca Mountain and Rock Valley following the leached group; also, it is 

decreasing from sediment to groundwater in Fortymile Wash following the leached group. 
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Aluminum (Figure 5.14) is increasing between precipitation and sediment in all locations, 

and then it is strongly leached in all locations. It is increasing between sediment and runoff in 

Fortymile Wash, southern Amargosa Desert, and Rock Valley, and decreases between runoff and 

groundwater in Fortymile Wash. In Amargosa River, aluminum decreases between sediment and 

runoff then increasing between runoff and groundwater following the leached group. Aluminum 

concentration in groundwater is not clear in western side of Yucca Mountain, southern Amargosa 

Desert, and Rock Valley because of the lake of data. 

Figure 5.15, shows the box plots of iron concentrations in the different categories. Iron 

trend is not clear in groundwater in the western side of Yucca Mountain, southern Amargosa 

Desert, and Rock Valley because of the lake of data. Iron is increasing between precipitation and 

sediment in all locations; strongly leached in Rock Valley, and it is leached in the remaining 

locations; it is decreasing between runoff and groundwater in Fortymile Wash, and increasing 

between runoff and groundwater in the Amargosa River.  

Figure 5.16, shows the box plots of lithium in the different categories. Lithium increases 

from precipitation to groundwater in all locations, and it is strongly leached in all locations. 

Figure 5.17, shows the box plots of barium in the different categories. In western side of 

Yucca Mountain, barium decreases between precipitation and sediment, then increasing between 

sediment and runoff, and then decreases from runoff and groundwater following scavenged 

group. In the other locations, it is strongly leached. 

Figure 5.18, shows the box plots of strontium in the different categories. Strontium is 

strongly leached in Amargosa River, Fortymile Wash, and western side of Yucca Mountain; it 

increases from precipitation to runoff, and then decreasing between runoff and groundwater in 

Fortymile Wash and western side of Yucca Mountain. 
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Strontium is increasing between runoff and groundwater in the Amargosa River. In the 

southern Amargosa Desert and rock Valley, strontium increases between precipitation and 

sediment, then decreases from sediment to groundwater following leached group. 

Total nitrogen (Figure 5.19) follows leached group in the Amargosa River and Fortymile 

Wash, where it is increasing between precipitation and sediment, and then decreasing between 

sediment and runoff; it is strongly leached in the western side of Yucca Mountain, where 

increasing from precipitation to runoff; and follows nutrient group in the southern Amargosa 

Desert and Rock Valley, where it is concentration in the runoff is lower than that in sediment and 

precipitation. 

Figure 5.20, shows the box plots of nitrate in the different categories. Nitrate increases 

between precipitation and sediment in all locations, and it is strongly leached in western side of 

Yucca Mountain, and then follows nutrient group in the remaining locations. 

Figure 5.21, shows the box plots of sulfate in the different categories. Groundwater 

contains the greatest amount of sulfate in all locations. The increase in sulfate moving from 

surface runoff to groundwater may be due to longer flow paths which allow more water/rock 

interaction and hydrothermal alteration of older volcanic rocks, i.e. secondary mineralization 

believed to have formed under closed conditions. Sulfate strongly leached in the Amargosa River 

and southern Amargosa Desert. In Fortymile Wash, western side of Yucca Mountain, and Rock 

Valley, sulfate decreases between precipitation and sediment, and then increases between 

sediment and runoff following the scavenged pattern.   

Fluoride (Figure 5.22) follows the scavenged type in all locations, where decreases 

between precipitation and sediment, and then increases from sediment to groundwater. The 

greatest amount of fluoride concentrates in the groundwater in all locations. 
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The general type of arsenic trend (Figure 5.23) in the Amargosa Desert area is nutrient. 

Arsenic increases between precipitation and sediment, and then decreases between sediment and 

runoff following the leached pattern in the southern Amargosa Desert; in the remaining locations 

it is decreasing from precipitation to groundwater following the nutrient pattern. 

Phosphate (Figure 5.24) is scavenged in Fortymile Wash, western side of Yucca 

Mountain, and Rock Valley, and it is following the nutrient pattern in the southern Amargosa 

Desert and Amargosa River.  

Copper (Figure 5.25) is following the nutrient pattern in the Amargosa River, and then is 

leached in the remaining locations. 

Figure 5.26, shows the box plots of manganese in the different categories. Manganese is 

scavenged in Fortymile Wash and Rock Valley, strongly leached in the western side of Yucca 

Mountain and southern Amargosa Desert, and follows the nutrient pattern in the Amargosa 

Desert. 

Figure 5.27, shows the box plots of molybdenum in the different categories. 

Molybdenum is scavenged in Fortymile Wash, western side of Yucca Mountain, and Rock 

Valley, strongly leached in the southern Amargosa Desert and Amargosa River. 

Figure 5.28, shows the box plots of rubidium in the different categories. Rubidium is 

scavenged in the western side of Yucca Mountain, southern Amargosa Desert, and Rock Valley, 

leached in the Amargosa River and Fortymile Wash. 

Figure 5.29, shows the box plots of vanadium in the different categories. Vanadium 

strongly leached in Rock Valley, and follows the nutrient group in the other locations.  

Figure 5.30, shows the box plots of zinc in the different categories. Zink is leached in the 

Amargosa River, and scavenged in the other locations.  
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5.5.3.3 Analysis of variance (ANOVA) 

ANOVA is applied on the chemical constituents that grouped by all sample types with all 

locations (test 1 in Table 5.10), runoff and groundwater in all locations (test 2, Table 5.10), and 

runoff and groundwater in Fortymile Wash, Rock Valley, and western side of Yucca Mountain 

(test 3, Table 5.10). ANOVA indicates that some chemical constituents are statistically 

significant within different locations and sample types like sodium (in test 1, 2, 3), some of it 

significant within the locations but it is not within the sample types like calcium and magnesium 

(in test 2), and TDS (in test 3), some of it insignificant within the locations but it is within the 

sample types like calcium (in test 1), barium and cesium (in test 2), and sulfate (in test 3), and 

some of it insignificant within the locations and the sample types like aluminum, iron, and nickel 

(in test 1, 2, 3). ANOVA (in test 2, 3) indicates that chloride concentrations are statistically 

insignificant between runoff and groundwater, and this is consistent with the hypothesis that 

infiltration of surface runoff from storms has been a dominant source of groundwater in those 

locations. 

5.5.4 Piper diagram 

Figure 5.31 presents a Piper Plot showing precipitation, sediment, surface runoff, and 

groundwater in the Amargosa Desert Region. A number of evolutionary changes are evident 

between precipitation, runoff and incorporation into groundwater. The black arrows in the 

diamond-shaped area give an indication that the runoff is the major source for the groundwater 

chemistry evolution and then the groundwater recharge. The diagram shows that the precipitation 

plotting would be referred to as Ca/HCO3-type water with some mixing. Sediment leached water 

plotting would be referred to as Ca/HCO3
 to Ca-(Na, K)/HCO3-type water and no mixing. Runoff 

plotting would be referred as Ca/HCO3
 to Ca-(Na, K)/HCO3-type water with some mixing. 
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Groundwater plotting would be referred as (Na, K)/HCO3-type water with some mixing. 

Furthermore, the diagram shows mixed cation-mixed anion-types between precipitation, runoff, 

and groundwater.  

Table 5.10: ANOVA Tests for Significant Differences between Means (Chemical Constituents in 
mg/l, except otherwise indicated) 

Test 1, all locations Vs all sample types Test 2, all locations Vs R c & G d Test 3, (FMW e, RV f, YMW g) Vs R & G 
Element Location Sample type Location Sample type  Location Sample type 

TDS 0.00 0.00 0.00 0.00 0.02 0.09 
T. Alk as CaCO3

a 0.02 0.00 0.00 0.00 0.01 0.01 
Non car. Alk b % 0.01 0.00 0.20 0.00 0.84 0.00 
Cl - 0.00 0.00 0.00 0.07 0.14 0.42 
SO4 

2- 0.00 0.00 0.00 0.00 0.26 0.00 
Ca2+ 0.60 0.00 0.00 0.52 0.11 0.01 
Mg2+ 0.00 0.00 0.00 0.84 0.08 0.50 
K+ 0.00 0.00 0.00 0.03 0.29 0.00 
Na+ 0.00 0.00 0.00 0.00 0.04 0.00 
F- 0.02 0.00 0.00 0.00 0.00 0.00 
Br- 0.90 0.04 0.02 0.00 0.03 0.00 
Total B 0.50 0.00 0.71 0.03 0.12 0.44 
PO4

3- 0.50 0.00 0.21 0.00 0.15 0.02 
Total N  0.40 0.00 0.51 0.00 0.63 0.00 
NO3

- 0.03 0.00 0.27 0.00 0.40 0.00 
NH3  0.06 0.00 0.23 0.01 0.38 0.01 
Al3+ 0.50 0.16 0.72 0.14 0.59 0.76 
As3- 0.14 0.00 0.19 0.20 0.01 0.40 
Total Fe 0.05 0.50 0.05 0.61 0.88 0.92 
Total Cu 0.25 0.00 0.52 0.88 0.51 0.85 
Ba2+ 0.34 0.00 0.30 0.00 0.32 0.00 
Cs+ 0.04 0.00 0.10 0.00 0.41 0.00 
Li+ 0.01 0.00 0.08 0.13 0.77 0.23 
Total Mo 0.37 0.01 0.60 0.84 0.96 0.36 
Sr2+ 0.14 0.02 0.00 0.45 0.05 0.75 
Rb+ 0.00 0.00 0.00 0.34 0.04 0.29 
Total Ti  0.27 0.00 0.48 0.23 0.92 0.23 
Total U 0.29 0.00 0.03 0.00 0.73 0.00 
Total V 0.99 0.05 0.82 0.59 0.67 0.64 
Zn2+ 0.72 0.02 0.82 0.16 0.84 0.17 
Total Pb 0.47 0.03 0.17 0.82 0.52 0.71 
Total Mn 0.52 0.13 0.09 0.03 0.26 0.02 
Ni2+  0.62 0.50 0.66 0.84 0.61 0.95 
Se2- 0.16 0.05 0.25 0.51 0.32 0.86 

a total alkalinity; b non-carbonate alkalinity; c runoff; d groundwater; e Fortymile Wash; f Rock 
Valley; g western side of Yucca Mountain. Red font means statistically significant. 
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preserves its isotopic fingerprint reflecting the history and origin before infiltration, which makes 

it a useful tool to interpret recharge mechanisms (Mahlknecht et al., 2004). Because of the 

preferential rainout of heavy isotopes, large rain events are more depleted in isotopic 

composition than small rain events (Mahlknecht et al., 2004). Furthermore, because of the 

evaporation during minor rain events, 18O and 2H intensify will be effected by the enrichment of 

heavy isotopes (Mahlknecht et al., 2004). Evaporation process alters the original 18O-2H 

relationship of the rainfall resulting in deuterium excess (d-values) lower than eight, as reported 

in many arid regions (Mahlknecht et al., 2004). During the evaporation of water from the surface 

or soil water, enrichment of 18O and 2H occurs (Mahlknecht et al., 2004). 

Classen (1985) found the δ2H and δ18O values of Amargosa Desert groundwater to be 

depleted compared to Yucca Mountain, this is attributed to colder climate conditions during 

recharge 10,000 to 15,000 years B.P. Using environmental isotopes, White and Chuma (1987) 

concluded that Oasis Valley groundwater is a mixture of underflow from Pahute Measa and 

recharge in the nearby Bulfrog Hills. Ingraham et al. (1989) studied five years of precipitation 

and spring δ2H and δ18O data from the Nevada test site (NTS) and suggested that the local 

meteoric water line was (δ2H = 6.87 δ18O - 6.5), which was slightly δ18O enriched from the 

global meteoric water line. Kerrisk (1987) and Matuska and Hess (1989) found that Yucca 

Mountain well waters were slightly δ2H depleted from the Ingraham et al. (1989) proposed local 

meteoric line, and the global meteoric water line, in addition Matuska and Hess (1989) found 

that water samples in Fortymile Wash were slightly more enriched in terms of δ18O and δ2H than 

Yucca Mountain wells. 

Figure 5.32 presents water stable isotope values of precipitation, surface runoff, and 

groundwater. The distance from the global meteoric water line which is indicative of the degree 
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of evaporation, is similar for surface runoff and groundwater. The surface runoff samples exhibit 

a broader spread parallel to the meteoric water line.  

 

Figure 5.32: Relationship between the stable isotopes of 
water in precipitation, runoff, and groundwater 

of the independence catchment. GMWL 
means global mean water line. 

Table 5.11: Mean Concentrations of the Stable Isotopes 
of Water Groped by Sample Type per each 

Site Location. 

Precipitation Runoff Groundwater 

Location 
δ2H 
‰ 

δ18O 
‰ 

δ2H 
‰ 

δ18O 
‰ 

δ2H 
‰ 

δ18O 
‰ 

AR a N/A N/A -77.3 -9.3 -102.9 -13.8 

YMW b N/A N/A -86.2 -11.1 -102.6 -13.7 

FMW c -74 -8 6 -9 .3 -11.8 -101.6 -13.3 

SAD d N/A N/A -108.3 -13.5 -101.5 -13.2 
a Amargosa River; b western side of Yucca Mountain; 
cFortymile Wash; d southern Amargosa Desert. 

 

The data presented in Figure 5.32 shows a new local meteoric line as (δ2H = 6.83 δ18O 

+9.7), which is slightly δ18O enriched from the global meteoric water line. Precipitation is more 

enriched in terms of δ2H and δ18O than runoff and groundwater in the site locations, and this 

could indicate to a short rainfall event and high evaporation. Most of runoff samples are more 

enriched in terms of δ2H and δ18O than the groundwater from the same site location (Table 5.11), 

and per site location runoff’s δ2H and δ18O depleted between Amargosa River, western side of 

Yucca Mountain, Fortymile Wash, and southern Amargosa Desert; whereas the groundwater’s 

δ2H and δ18O follow an opposite direction per location, i.e. it is enriched between Amargosa 

River, western side of Yucca Mountain, Fortymile Wash, and southern Amargosa Desert (Table 
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5.11). This could mean that the southern Amargosa Desert location has highest infiltration rate, 

then Fortymile Wash, western side of Yucca Mountain, and Amargosa River. In addition, the 

most enriched groundwater could represent lower elevations and /or short rainfall events. Figures 

(5.A40-5.A42), in Appendix 5.A, show the relationship between the stable isotopes of water in 

runoff, and groundwater in Fortymile Wash, western side of Yucca Mountain, and southern 

Amargosa Desert, respectively. 

5.5.6 Hydrochemical modeling 

Mean saturation indices (SI) of different sample types are given in Table 5.12. In this 

study, if the SI is between (-0.5 and 0.5), water composition will be considered in equilibrium 

with respect to the mineral phase; a value greater than (0.5) will be considered as 

supersaturation; and a value less than (-0.5) will be considered as undersaturation. All water 

samples are undersaturated (SI <-0.5) with respect to alunite, anglesite, celestite, chrysotile, 

fluorite, gypsum, and melanterite. Precipitation, sediment leached, and runoff are undersaturated 

with respect to albite and sepiolite, whereas groundwater is in equilibrium. Precipitation, 

sediment leached, and groundwater are undersaturated with respect to anorthite, barite, and 

willemite, whereas runoff is in equilibrium. Precipitation and sediment leached are 

undersaturated with respect to Ca-montmorillonite, illite, K-feldspar, whereas runoff and 

groundwater are supersaturated. Runoff and groundwater are in equilibrium with respect to 

calcite and dolomite, whereas precipitation is undersaturated, and sediment leached is 

supersaturated. Runoff, groundwater, and sediment leached are supersaturated with respect to 

chlorite and hydroxyapatite, whereas precipitation is undersaturated. Precipitation and 

groundwater are undersaturated with respect to rhodochrosite, whereas runoff and sediment are 
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in equilibrium. Runoff and groundwater are supersaturated with respect to talc, whereas 

precipitation is undersaturated, and sediment is in equilibrium. 

Table 5.12: Mean Saturation Indices (SI) of Different Sample Types Grouped by Site Locations. 

Phase Chemical formula Precipitation SI Sediment SI Runoff SI Groundwater SI 

Albite NaAlSi3O8 -8.46 -8.35 -1.77 0.53 

Alunite KAl3(SO4)2(OH)6 -8.37 -10.84 -4.33 -4.96 

Anglesite PbSO4 -7.21 -7.61 -6.69 -6.31 

Anorthite CaAl2Si2O8 -6.99 -3.28 -0.41 -0.56 

Barite BaSO4 -1.68 -1.57 -0.37 -0.76 

Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 -4.17 -1.9 4.22 4.77 

Calcite CaCO3 -1.83 0.97 0.16 0.23 

Celestite SrSO4 -4.13 -3.73 -3.13 -2.57 

Chlorite(14A) Mg5Al2Si3O10(OH)8 -13.5 0.81 1.97 2.36 

Chrysotile Mg3Si2O5(OH)4 -10.89 -2.02 -2.48 -1.54 

Dolomite CaMg(CO3)2 -4.22 1.11 0.08 0.31 

Fluorite CaF2 -2.88 -3.58 -2.56 -0.66 

Gypsum CaSO4:2H2O -3.76 -3 -2.57 -2.14 

Hydroxyapatite Ca5(PO4)3OH -0.57 7.03 4.82 1.4 

Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 -5.15 -1.54 4.07 4.48 

K-feldspar KAlSi3O8 -5.77 -2.09 1.55 2.31 

Melanterite FeSO4:7H2O -10.47 -12.32 -9.5 -8.77 

Rhodochrosite MnCO3 -1.99 0.35 0.2 -0.56 

Sepiolite Mg2Si3O7.5OH:3H2O -10.1 -3.22 -1.82 -0.4 

Talc Mg3Si4O10(OH)2 -10.35 -0.31 1.27 3.16 

Willemite Zn2SiO4 -3.89 -2.5 -0.35 -1.36 

 
Simulations with the PHREEQC code indicate that the observed changes are consistent 

with a number of anticipated processes. Moving from precipitation to surface runoff, cations and 

anion increase, δ2H and δ18O depleted (Figure 5.33). Between surface runoff and groundwater 

sulfate, sodium, and alkalinity increase, whereas calcium, magnesium, potassium, and bromide 

decrease, δ2H and δ18O depleted. The evolution is clearest in the upper diamond of the Piper plot 

and in Figure 5.33 where an increase in alkalinity (precipitation to groundwater) is followed by 

an increase in sodium (precipitation to groundwater).  
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estimated by many authors above as 170 mm/yr. The calculation results are presented in Table 

5.13 below. 

Table 5.13: Estimates Effective Recharge into the Amargosa Desert 

Location Precipitation Cl- 
(mg/l), before 

correction 

Precipitation Cl- 
(mg/l), after 
correction 

Groundwater Cl- 
(mg/l) 

Groundwater recharge 
(mm/yr), Eq. 5.1 

Groundwater recharge 
(mm/yr), Eq. 5.2 

SAD a 4.5 0.41 22.5 2.7-4.8 3.1 

FMW b 2.14 0.2 7.8 7.7-13.7 4.35 

AR c 2.3 0.21 42.2 1.4-2.5 0.85 

RV d 3 0.273 14.75 4.1-7.25 3.15 

YMW e 3.3 0.3 10.75 5.6-9.96 4.7 
Total groundwater recharge in the 

Amargosa Desert 21.5-38.1 16.15 

a Southern Anargosa Desert; b Fortymile Wash; c Amargosa River, d Rock Valley, e western side 
of Yucca Mountain 

From Table (5.13), applying Equation 5.1 on the data indicates that the groundwater total 

recharge in the Amargosa Desert is ranged between 40,686 and 72,099 acre-feet/yr by an average 

of 56,392 acre-feet/yr (Amargosa Desert area is about 573440 acre (Lopes and Evetts, 2004)), 

which is 12.6-22.4 percent of precipitation with an average of 17.5 percent; whereas, Equation 

5.2 estimates it on the order of 30,561 acre-feet/yr, which is 9.5 percent of precipitation, with the 

great contribution coming from western side of Yucca Mountain and  Fortymile Wash.  

Because of the uncertainty in estimation the chloride (wet and dry) deposits and the 

estimation that the all sub-regions have the same range, Equation 5.2 has accurate results, and 

this results matched the results that obtained from the literature as described in section 5.3, 

especially the results that obtained from (Walker and Eakin, 1963; Rush, 1970) which estimated 

the groundwater recharge in Amargosa Desert in the range 24,000-33,000 acre-feet/yr. 

5.6 CONCLUSIONS 

Five different sub-regions were selected in the Amargosa Desert region for runoff 

sampler emplacement to collect runoff water in order to measure the chemical characteristics of 

runoff water that has contacted and leached some of the top soil, which believed to be an 
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important source of groundwater recharge in the area. In total sixty runoff samplers were 

installed at thirty different locations in the major arroyos in the sub-regions as follows: 24 

samplers in Fortymile Wash, 20 in western side of Yucca Mountain, 8 in the Amargosa River, 4 

in Rock Valley, and 4 in the southern Amargosa Desert (Ash Meadows area). At each site 

location, rain gauge was installed to collect water precipitation, and sediment samples were 

sampled before and after the storm events that occurred during the research time period (January 

2009 to January 2011). The runoff sampler design proved its ability to resist the arid weather 

conditions, capture runoff water, and provides unique data. In total, 167 runoff samples were 

collected from the washed sand filled sampler (WSB), 9 runoff samplers from natural alluvium 

filled sampler (NAB), in addition to 45 precipitation and 182 sediment samples, were collected 

during the period January 2009 and January 2011. Because of lack of data, runoff samples that 

were collected from the natural alluvium filled sampler were excluded from this research. 

Because the degree of evaporation is unknown the changes in chemistry between 

precipitation and runoff samples is best viewed in terms of the changes in chemical signature 

rather than in terms of individual concentrations. In non-runoff producing storms the water has 

time to react with soil minerals prior to evaporation. When near complete evaporation of the 

water occurs the isotopic signature of the water will be lost, but any dissolved ions (and dry-fall) 

will remain in the shallow soil and sediments. When surface runoff occurs the new precipitation 

mixes with shallow soil moisture and dissolves some of the precipitated salts in the desiccated 

soil. The soil samples represent a leaching of the shallow sediment in the stream bottom, but the 

most soluble salts in these samples (e.g., chloride) may have been leached by a runoff event prior 

to sampling. The soil leaching process also provided less contact time between soil and water 

than the infiltration process. 
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Chemical analysis of precipitation, runoff, sediment, and groundwater show three 

potential clusters of the samples chemical constituents: leached, scavenged, and nutrients groups. 

Leached group is presented when constituent concentration in sediment is greater than that in 

precipitation and the concentration in runoff is in the middle like (TDS, total alkalinity, sodium, 

calcium, magnesium, potassium). Scavenged group is presented when the constituent 

concentration in precipitation and runoff is greater than that in sediment like (uranium). Nutrient 

cluster is presented when the chemical concentration in precipitation is greater than that in 

sediment which is greater than that in runoff, like (fluoride, sulfate, arsenic, copper, vanadium, 

bromide, and phosphate). 

ANOVA tests indicate that most of chemical constituents are statistically significant 

between sample types and sample locations, and chloride is statistically insignificant between 

runoff and groundwater.  

Piper diagram shows mixed cation-mixed anion-types between precipitation, runoff, and 

groundwater. In addition, it is show three hydrochemical faces, Ca/HCO3-type water in 

precipitation, Ca/HCO3 to Ca-(Na, K)/HCO3-type water in runoff, and (Na, K)/HCO3-type water 

in groundwater, and this could be because the dominance of hydrolysis reactions involving 

H2CO3 leaching of Na in the bed rocks. 

Isotopes analysis shows that the distance from the meteoric water line which is indicative 

of the degree of evaporation, is similar for surface runoff and groundwater. The surface runoff 

samples exhibit a broader spread parallel to the meteoric water line. Isotopic data presents a local 

meteoric line as (δ2H = 6.83 δ18O+9.7), which is slightly δ18O enriched from the global meteoric 

water line. Precipitation is more enriched in terms of δ2H and δ18O than runoff and groundwater, 

and this is because the precipitation samples had evaporated between the time of precipitation 
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and the time of sampling. Most of runoff samples are more enriched in terms of δ2H and δ18O 

than the groundwater from the same site location, and per site location runoff’s δ2H and δ18O 

depleted between Amargosa River, western side of Yucca Mountain, Fortymile Wash, and 

southern Amargosa Desert; whereas the groundwater’s δ2H and δ18O follow an opposite 

direction per location, i.e. it is enriched between Amargosa River, western side of Yucca 

Mountain, Fortymile Wash, and southern Amargosa Desert. This could mean that the southern 

Amargosa Desert location has highest infiltration rate, then Fortymile Wash, western side of 

Yucca Mountain, and Amargosa River, in addition, the groundwater beneath southern Amargosa 

Desert and Fortymile Wash is younger than that in the other location, and the groundwater under 

Amargosa River is the oldest. The most enriched groundwater could represent lower elevations 

and /or short rainfall events. 

PHREEQC results suggesting the precipitation of some type of calcium/magnesium 

carbonate (calcite and dolomite). Weathering of silicate minerals may release sodium and 

alkalinity with the increased alkalinity driving precipitation of carbonates. Illite, a potential sink 

for potassium, is supersaturated in groundwater. The increase in sulfate could be potentially from 

oxidation of small amounts of sulfide minerals in the volcanic rock sediments. 

Groundwater total recharge in the Amargosa Desert is estimated on the order of 30,561 

acre-feet/yr, which is 9.5 percent of average annual precipitation, with the great contribution 

coming from western side of Yucca Mountain and Fortymile Wash, this results matched with the 

results obtained from the literature, especially the results that obtained from (Walker and Eakin, 

1963; Rush, 1970) which estimated the groundwater recharge in Amargosa Desert in the range 

24,000-33,000 acre-feet/yr. 
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Together, the statistical analysis (descriptive statistics, box plots, and ANOVA), Piper 

diagram, stable isotopes analysis, and PHREEQC analysis for the precipitation, sediment, runoff 

and groundwater samples indicate that Chloride and the stable isotopes of water show substantial 

overlap of values with underlying groundwater, consistent with the concept that infiltration of 

surface runoff is a major contributor to groundwater recharge in the study area.  Groundwater 

concentrations represent a larger collage of infiltration events than have been collected in the 

surface runoff sampling making an exact match unlikely, and the importance of surface runoff 

depends upon topography.  

The dissolution and weathering of minerals during and subsequent to the infiltration 

process, but not with large amounts of additional evaporation prior to deep infiltration, cause the 

increasing of analyte concentrations in groundwater. The influence of transpiration on the 

chemistry of infiltrating water is more complicated than that of evaporation given that chloride 

uptake differs between plants; leading to a combination of evaporative concentration at depth 

and transport to the surface with eventual recycling in leaves and dead plant materials. 
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Table 5.A1: Median Concentrations of the Chemical Constituents of each Sample Type 
(Precipitation, Sediment, Runoff, and Groundwater) Normalized by Sample 

Chloride for all Site Locations together (Amargosa Desert Area) (in molar ratio, 
except otherwise indicated) 

Chemical constituent Precipitation Sediment Runoff Groundwater 

TDS/Cl 10.8717966 142.856 19.29 32.22365591 

Total alkalinity (as CaCO3)/Cl  5.35810381 155.812 12.08 15.34575261 

Non carbonate alkalinity as CaCO3 % 59.0877143 78.2953 66.96 82.95712911 

Chloride (ppm) 2.127675 0.90621 8 9.9 

Sulfate/Cl  1.49126641 3.00254 1.143 3.882352941 

Calcium/Cl  2.23942272 29.7425 3.386 1.724137931 

Magnesium/Cl  0.21868256 1.70495 0.579 0.2875 

Potassium/Cl  0.28929599 8.13615 0.938 0.510638298 

Sodium/Cl  0.625 5.19613 1.25 6.030150754 

Fluoride/Cl  0.08734874 0.04103 0.014 0.166666667 

Bromide/Cl  0.09838688 0.17274 0.029 0.02020202 

Boron/Cl  0.00235006 1.25623 0.013 0.000684932 

Phosphate/Cl  0.20536485 0.13683 0.035 0.01010101 

Nitrogen total/Cl  0.16593885 0.88907 0.15 0.039473684 

Nitrate/Cl  0.73013092 3.9119 0.242 0.052631579 

Ammonia/Cl  0.20178164 1.08466 0.094 0.032105263 

Aluminum/Cl  0.00608684 0.0624 0.008 0.004422642 

Arsenic/Cl  0.00254492 0.00634 4E-04 0.000128205 

Iron/Cl  0.00109201 0.04399 0.003 0.000684932 

Copper/Cl  0.00112199 0.04861 5E-04 0.0005 

Barium/Cl  0.00302554 0.00919 0.007 0.000197368 

Caesium/Cl  0.00231205 0.0058 0.008 5.05051E-05 

Lithium/Cl  0.00119591 0.00593 0.002 6.57895E-05 

Molybdenum/Cl  0.00021593 0.00041 2E-04 6.57895E-05 

Silica/Cl  0.15978525 0.18039 2.333 5.6 

Strontium/Cl  0.01572956 0.09339 0.021 0.003448276 

Rubidium/Cl  0.00031994 0.00146 3E-04 6.57895E-05 

Titanium /Cl  0.00117503 0.00202 5E-04 0.000294118 

Uranium/Cl  0.00020677 4.4E-05 2E-04 6.75676E-06 

Vanadium/Cl  0.00058883 0.00927 2E-04 5.88235E-05 

Zinc/Cl  0.00575152 0.00329 0.001 0.000595238 

Lead/Cl  2.3501E-05 0.00054 2E-05 5.88235E-06 

Manganese/Cl  0.0038318 0.00591 0.003 0.000320513 

Nickel/Cl  0.00016243 0.00094 3E-04 0.0000625 

Selenium/Cl  2.3501E-05 4E-05 4E-05 5.84795E-06 
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ABSTRACT 

Groundwater infiltration through alluvium was investigated in the Amargosa Desert, Nevada 

using borehole drill cuttings, groundwater chemistry, and applying a novel method for collecting 

runoff water. Water chemistry and chloride concentrations collected from specially designed 

runoff samplers, placed in Fortymile Wash, an ephemeral arroyo, and its tributaries, closely 

match the chemistry of underlying groundwater where a plume of low chloride water underlies 

the wash until it connects with the Amargosa River. This evidence indicates that current and past 

infiltration of surface runoff (stormwater) is the primary source of the underlying groundwater 

plume. However, drill cuttings from wells near Fortymile Wash at an elevation of < 1,200 m 

analyzed using the chloride mass balance method (CMB) indicate that infiltration in the desert 

was negligible during at least the last 10,000 years, and that most chloride deposition during this 

time period accumulated in the upper alluvium. The collected data leads to a revised 

interpretation of semi-arid zone recharge and the CMB method. The results suggest that 

infiltration of surface runoff from large storm events in this region is a source of recharge more 
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important that previously realized and that CMB method is inaccurate when applied to surface 

runoff infiltration. CMB must be used with caution in these types of situations as most of the 

groundwater recharge occurs without including a significant fraction of watershed chloride. 

KEYWORDS: Chloride Mass Balance, Groundwater, Surface Runoff, Fortymile Wash, Recharge. 

6.1 INTRODUCTION 

Quality, quantity and timing of recharge are primary factors for the sustainable use of 

groundwater, especially in semi-arid regions where water resources are limited. This study 

examines recharge characteristics by applying a novel method for collecting surface runoff 

consisting of specially designed samplers emplaced around Fortymile Wash, east of Yucca 

Mountain and north of the Amargosa Desert, Nevada. Yucca Mountain Site characterization 

activities associated with the concept of placing high level nuclear waste repository within the 

mountain provided a wealth of hydrological information that can be applied to estimating 

groundwater recharge and is used here to aid in the interpretation of data collected with surface 

runoff samples. In previous studies (Woocay and Walton, 2008a, 2008b), groundwater chemistry 

beneath the wash was found to be younger and fresher (lower chloride and total dissolved solids) 

than adjacent waters, for approximately 40 km, and this was taken as evidence of the large 

influence of surface runoff infiltration on recharge. In order to study and determine the effects of 

infiltration, surface runoff samplers were designed and emplaced at the wash and other 

ephemeral streams in the vicinity. Our research methodology included emplacement site 

determination and water analysis criteria establishment, along with surface runoff sampler 

design, construction, field emplacement and sampling as described in detail in Al-Qudah et al. 

(2010). This paper focuses on the chemical analysis results of collected precipitation, surface 

runoff, and groundwater in the Fortymile Wash region and their comparison to borehole chloride 
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profiles which lead to a revised interpretation of recharge in semi-arid regions and of limitations 

to the chloride mass balance method (CMB). 

The chloride mass balance method (CMB) is one technique for estimating recharge to 

groundwater (Scanlon, 1991; Scanlon et al., 2002, 2006; Subyani, 2004; Flint et al., 2002; 

Hevesi et al., 2002; Russell, 2002; Wood and Sanford, 1995; Wood, 1999; Ginn, 1997; Bazuhair 

and Wood, 1996; Tyler et al., 1995). In CMB the aquifer’s chloride concentration reflects the 

degree to which the water has been concentrated by evaporation. A major limitation of the CMB 

in arid regions is the presumption that chloride and water move together. When areal recharge is 

present (i.e., general net downward movement of water through the sediments and soil) chloride 

and water will move together and CMB can be applied, perhaps with corrections to reflect 

chloride transport in run-on and runoff waters (Wood and Sanford, 1995; Wood, 1999). When 

recharge is focused and net accumulation of chloride is occurring in soils and sediments, the 

mass balance becomes problematic. 

Profiles of chloride concentrations in alluvium provide a qualitative estimate on downward 

water moisture fluxes over long periods. The CMB approach is based on several assumptions: (l) 

one-dimensional, vertical, downward, piston-type flow; (2) precipitation/deposition is the only 

source of chloride; (3) mean annual precipitation and chloride concentration of precipitation 

remains constant through time; (4) the steady-state chloride flux carried beneath the root zone by 

infiltrating water is equal to the chloride concentration in rainfall; (5) chloride behaves as a 

conservative tracer along the flow path and uptake by roots and anion exclusion are negligible 

(Scanlon, 1991; Bazuhair and Wood, 1996). In desert regions, chloride often accumulates in the 

soil while the associated water returns to the atmosphere by evaporation and evapotranspiration. 

This leads to a characteristic large bulge in soil chloride content at depths of usually less than 6 
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m in desert soil (Flint et al., 2002; Savard, 1996). In the study area there is evidence that the 

general behavior of chloride changes with elevation with areal recharge occurring at higher 

elevations and accumulation of chloride at lower elevations (Flint et al., 2002).  

The Amargosa Desert (Figure 6.1) lays in southern Nevada, north east of Death Valley, 

between the Mojave Desert and the southern boundary of the Great Basin. Yucca Mountain is 

located on federal land north of the Amargosa Desert and approximately 160 km northwest of 

Las Vegas. The area is drained by the ephemeral Amargosa River drainage basin which is the 

major tributary drainage area to Death Valley. Fortymile Wash, also ephemeral, is a major 

tributary to the Amargosa River, originating between Timber Mountain and Shoshone Mountain 

and draining southward along the east side of Yucca Mountain. Near U.S. Highway 95, the 

Fortymile Wash channel changes from being moderately confined to fanning out into several 

distributary channels that are poorly confined and that drain through several small populated 

areas. This poorly-defined, distributary drainage pattern persists downstream to its confluence 

with the Amargosa River.  

The present climate in the Amargosa Desert region is considered arid to semiarid, with 

average annual precipitation ranging from less than 130 millimeters (mm) at lower elevations to 

more than 280 mm at higher elevations (Flint et al., 2001). Between 2001 and 2005, average 

annual evapotransipiration rate, air temperature, soil temperature, and relative humidity were, 

respectively, 147.7-232.6 mm/year, 18-18.4 degrees centigrade (°C), 21.1-21.9 °C, and 

21.7-33.3% (Johnson et al., 2007). In contrast, the climate at the end of the Pleistocene epoch at 

approximately 11,500 years before present (yr BP) marked in North America by the end of the 

Tioga glacial maximum of the Wisconsin glaciation, was colder and wetter than the present 

(Benson et al., 2002; Harvey et al., 1999). Evidence of a wetter transition from the Pleistocene to 
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the Holocene epoch is also found in black mats formed in the southern Great Basin by increased 

spring discharge, which extended from 11,800 to 6,300 yr BP, with the majority appearing at 

10,000 yr BP (Quade et al., 1998). Other authors (Harvey et al., 1999) have noted the existence 

of large lakes in California and Nevada in the late Pleistocene to early Holocene epochs related 

to precipitation with temperatures 3 to 8 °C cooler and precipitation rates 60 to 300 percent 

greater than the current levels. These changes are attributed to a southward displacement of the 

jet stream, with resultant high winter precipitation (Harvey et al., 1999). Furthermore, of the 

early, middle, and late parts, into which the Holocene epoch is divided, the middle Holocene, 

approximately 8,000 to 3,000 yr BP, is considered the warmer and/or drier part of the three 

(Benson et al., 2002). From carbon, hydrogen, and oxygen isotope data, Claassen (1985) 

deduced that the major recharge in the area occurred during late Wisconsin glaciation, at the end 

of Pleistocene and through early Holocene time. 

Contemporary recharge in the region is generally considered sparse and derived mostly from 

higher altitudes by infiltration of precipitation and ephemeral runoff (Flint et al., 2001), while 

some authors believe that infiltration occurs mainly in washes or by direct entry into fractures 

exposed at the surface (Claassen, 1985; Montazer and Wilson, 1984). Water may infiltrate from 

melting snowpack in the mountains primarily on volcanic or carbonate rocks or adjacent to the 

mountains from streams flowing over alluvium (fans and channels) (Faunt, 2004). White and 

Chuma (1987) investigated carbon and isotopic mass balances of the Oasis Valley-Fortymile 

Canyon groundwater basin and concluded that groundwater in Fortymile Canyon may be from 

local origin. Water quality studies of precipitation, surface water, and groundwater isotopic and 

common ion concentrations, in addition to computer simulation of the groundwater system in the 

vicinity of the Amargosa Desert (Claassen, 1985; White and Chuma, 1987; Benson and 
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Klieforth, 1989; Patterson and Oliver, 2004; USGS, 2004; Savard, 1995, 1996, 1998) have 

concluded that recharge water is entering the groundwater system north of Yucca Mountain and 

have determined that recharges from Fortymile Wash, Oasis Valley, and Amargosa River may be 

a significant source of groundwater. 

Water moves along relatively shallow and localized flow paths that are superimposed on 

deeper, regional flow paths (Faunt, 2004). Regional groundwater flow is predominantly through 

conduits in the carbonate rocks. This flow field is influenced by complex geologic structures 

created by regional faulting and fracturing that can create conduits or barriers to flow. Infiltration 

of precipitation and runoff on high mountain ranges is thought to be the largest source of 

groundwater recharge. Savard (1995, 1996, 1998) found evidence of groundwater recharge from 

storm runoff events along the wash in the form of neutron logs, changes in water table elevation, 

and miscellaneous streamflow observations (such as velocity estimates, high water marks and the 

distance the streamflow traveled). 

In general, hydraulic gradients north of the Amargosa Desert follow a northwest to southeast 

trend, followed by gradients in the Amargosa Desert that portray a leveling out and then a 

gradual turn southwest toward Death Valley (Woocay and Walton, 2008a, 2008b). Water levels 

are less than 850 m above sea level in most of the western side of the Amargosa Desert, Jackass 

Flats, and Amargosa Flat and decrease to 660 m at the foothills of the Funeral Mountains 

(Woocay and Walton, 2008a, 2008b). In contrast, topography in the same area changes from 

1,050 m above sea level in the west and northeast to 700 m in the southeastern end of the 

Amargosa Desert near Ash Meadows (Woocay and Walton, 2008a, 2008b). 
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In this paper we present surface runoff chemistry and compare it to groundwater chemistry 

along with borehole chloride profiles to better understand the role of surface runoff as a source of 

groundwater recharge and the limitations of the CMB method. 

6.2 METHODS 

6.2.1 Surface runoff samplers 

Runoff samplers were designed to collect surface runoff water in order to measure the 

chemical characteristics of runoff water that has contacted and leached some of the top soil. The 

construction started by threading flexible polyethylene tubing through a hole made 25 mm below 

the top edge of the 9.5-liter bucket, to provide access to the inside of the runoff sampler once it is 

buried. The inner edge of the tubing was fixed to the bucket bottom with an epoxy adhesive, and 

the outer end blocked with a plug to prevent tubing clogging. In total, twelve runoff samplers, 

filled with washed silica sand (WSB), were installed at twelve different locations around 

Fortymile Wash (Figure 6.1) to capture surface runoff water. The samplers were placed at 

locations in surface-runoff channels where water is likely to pool and where sufficient depth of 

sediment facilitates digging a hole for emplacement. To the extent possible, samplers were 

placed in low gradient (depositional) portions of the arroyo to minimize washing out during 

storms. 

The runoff samplers are distributed in the study area in the following manner (Figure 6.1). 

Sampler-15 and Sampler-16-ALT are located in the Topopah Wash 122 m and 2.96 km 

upgradient from the Amargosa Valley Science and Technology Park, respectively. Sampler-29 is 

located in the west side of the Striped Hills, 0.43 km downgradient from U.S. highway 95. Sites  
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for Sampler-6A and Sampler-6B-2 are located to the south of the pole line road, middle channel 

of Fortymile Wash. Sampler-6A-2 and Sampler-6B are located to the South of the pole line road, 

western channel of Fortymile Wash. Sampler-7A is located to the South of U.S. highway 95, 

eastern channel of Fortymile Wash. Sampler-7B is located to the South of U.S. highway 95, 

western channel of Fortymile Wash. Sampler-8A1 is located in the western branch of eastern 

channel of Fortymile Wash. Sampler-8A2 is located in the eastern branch of eastern channel of 

Fortymile Wash. Sampler-8B is located in the western channel of Fortymile Wash.  

Samples collected at these sites included precipitation and surface runoff samples. Runoff 

samples were collected from the WSBs at each location shortly after three separate storm events 

occurring in: February, 2009; January, 2010; and December, 2010. Additionally, after the 

January, 2010, event, precipitation samples were collected from the rain gauges at each site. In 

total, twenty-two WSB samples and fourteen precipitation samples were collected during 

February, 2009, and December, 2010. Since the volume of water collected after storm events was 

variable, a decision criterion was established to evaluate if the amount of water stored in the 

samplers was enough to analyze all the required chemical parameters, and the laboratory used for 

analyses was contacted to determine minimum water sample volume requirements which then 

lead to determination of sampling priority based on data importance and volume requirements. 

The rain gauges used are simple (low cost) collectors that are open to the atmosphere. The water 

from rain gauges included both wet-fall and dry-fall since the last time each gauge was emptied 

and rinsed. Since readings and chemistry collected at rain gauges were subject to unknown 

amounts of evaporation prior to collection, the readings should not be equated with precipitation 

amount or initial chemistry. 
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Surface runoff and precipitation samples were collected, preserved, shipped, and analyzed 

based on the standards methods for the examination of water and wastewater (Clescerl, 2000) by 

using inductively coupled plasma mass spectrometry (ICP-MS) and ion-exchange 

chromatography (IEC) machines, in addition to the volumetric titration, for major cations and 

anion (Cl-, HCO3
-, SO4

2-, Ca2+, Mg2+, K+, and Na+). Results generated by StatisticaTM9 (StatSoft 

Inc., 1984-2010) are presented on box plots to simplify data interpretation. 

6.2.2 Geochemical modeling 

PHREEQC (Parkhurst and Appelo, 1999) inverse modeling was used for simulating a variety 

of surface runoff and groundwater reactions and processes that can explain the water chemistry’s 

evolution. Major anion and cation median concentrations of surface runoff and groundwater 

were used as an input for the PHREEQC inverse modeling taking into consideration the initial 

saturation indices, ion exchange reactions, and the potential dissolution and precipitation of 

common minerals in the study area that do not appear in the initial saturation indices. The 

PHREEQC output shows many potential models that explain the evolution, and the best model 

was chosen based on the actual median differences between the surface runoff and groundwater 

chemistry.  

6.2.3 Nye County groundwater wells 

Nye County has 24 wells in the region as shown on Figure 6.1. Groundwater chemistry data 

were obtained from the Nye County Nuclear Waste Repository Project Office (NWRPO) web 

site as of April 2008 (NWRPO, 2008) and a Los Alamos National Laboratory report (LANL, 

2007). Data were compiled into a single database covering the Amargosa Desert region, and 
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giving preference to NWRPO (2008) data, due to data from newly developed wells and more 

resent analyses.  

6.2.4 Borehole chloride analysis 

Soil extracts were obtained from borehole cuttings samples that were previously collected by 

the Nye County Early Warning Drilling Program (NC-EWDP) from boreholes NC EWDP-22S, 

23P, 24P and 29P which were drilled using air as the primary drilling fluid to preserve sample 

integrity. Table 6.1 presents a summary of borehole information. Borehole cutting samples were 

selected in an attempt to characterize the upper and lower drill cuttings and therefore are not 

evenly spaced. Drill cutting samples were separated into two subsamples; the first was oven 

dried to determine the sample’s water percent content by weight, and the second one was used to 

obtain soil extracts. An extraction dilution of 1:1 (1 liter of deionized water per kg of soil) was 

used with a correction for the sample’s original water content. Soil extracts were then analyzed 

for chloride concentrations following ASTM standards (ASTM D2216-98, D4542-95).  

Table 6.1: Summary of Information for Boreholes Analyzed by Chloride Mass-Balance a. 

Borehole  NE-EWDP-22S NE-EWDP-24P NE-EWDP-29P NE-EWDP-23P 

Latitude (North) 36° 42' 15.132” 36° 42' 16.775" 36° 40' 57.297" 36° 41' 05.137” 

Longitude (West) 116° 25' 06.636” 116° 26' 52.756" 116° 26' 52.884" 116° 23' 50.412” 

Elevation (AMSL) 868.45 meters 850.45 meters 830.41 meters 868.58 meters 

Depth to Water 144 meters 124 meters 106 meters 130 meters 

Drilling Depth 142 meters 120 meters 96 meters 120 meters 

Number of Extracts 93 12 11 12 

Drilling Composition 0 to 109.7 meters: well-

graded sand  with silt and 

gravel (SW-SM)  

109.7 to 338.3 meters: silty 

sand with gravel (SM) 

0 to 18.3 meters interbedded well-graded 

sand with silt, clay and gravel (SW-SM/SC) 

and silty, clayey sand with gravel (SM/SC)  

18.3 to 74.7 meters: well-graded sand with 

silt, clay and gravel (SW-SM/SC)  

74.7 to 121.9 meters: silty, clayey sand 

with gravel (SM/SC) 

0 to 38.1 meters: well-graded sand 

with silt, clay and gravel (SW-

SM/SC) 

38.1 to 80.8 meters: 

Interbedded silty, clayey sand with 

gravel (SM/SC) and well-graded 

sand with silt, clay and gravel 

(SW-SM/SC) 

0 to 137.2 meters: 

well-graded sand 

with silt and gravel 

(SW-SM) 

aHere SW, SM, and SC represent sand with silt, sand with gravel, and sand with clay 
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specific fluctuations in chloride deposition and/or precipitation through time. With a lower 

chloride loading of 60 mg/m2/year, corresponding to contemporary values (Fabryka-Martin et al., 

2002), and considering a 170-mm average precipitation per year (Liu et al., 2003), an average 

chloride precipitation concentration of 0.35 mg/l is found, which is in agreement with values 

reported by Meijer (2002) for the Kawich Range sampling network some 150 km north of Yucca 

Mountain. With an upper chloride loading of 107 mg/m2/year (Liu et al., 2003), an average 

chloride precipitation concentration of 0.62 mg/l is found, corresponding to an attempt to correct 

for either greater past chloride loading or a higher past precipitation with chloride concentration 

remaining constant. Integrating Equation 6.1 from the surface to the available data depths yields 

infiltrations dates before-present. Figure 6.3 presents the infiltration dates before present for 

borehole 22S which had the most available data points. Woocay and Walton (2008a, 2008b) 

present complete results for infiltration dates before present and pore velocities for all four 

boreholes, using upper and lower chloride loadings. 
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The watershed is confined by the natural topological divides and the alluvium aquifer. 

Recharge and chloride do not infiltrate from the alluvium to the underlying carbonate aquifer nor 

does this aquifer upwell into the alluvium aquifers. 

Enough time has elapsed for the watersheds under study to achieve steady state i.e. climate 

has been similar for the last 3,000 years, corresponding to the late Holocene, and warmer and/or 

drier between 8,000 to 3,000 years before present (YBP), corresponding to the middle Holocene 

(Benson et al., 2002). 

Chloride concentration can be estimated as follows: 

۱ = ܄ۻ .ࢗࡱ																																																																													 ૟. ૛ 

Where: 

M: chloride mass, mg 

V: volume of water holding chloride, m3  

Chloride mass flux is chloride loading (Lሶ େ୪ (mg/m2/year)) times watershed area (A (m2)). ۻሶ = ሶۺ .ࢗࡱ																																																																										ۯܔ۱ ૟. ૜ 

Noting that the mass flux of chloride entering the watershed is equal to mass flux exiting, and 

assuming a representative average chloride concentration for the groundwater exiting the 

watershed and entering the Amargosa Valley groundwater, the effective recharge from any given 

watershed is given by: Vሶ୭୳୲ = Mሶ େ୪/C୭୳୲ = Lሶ େ୪A/C୭୳୲																																			ࢗࡱ. ૟. ૝ 

Equation 6.2 assumes that the entire watershed’s area contributes chloride and water to the 

groundwater and this is not the case as some chloride is sequestered in thick soil at locations 

where not enough precipitation occurs to trigger percolation beyond the root zone that would 
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induce infiltration. An effective infiltration altitude of 1,200 meters above sea level (ASL) is 

assumed thus limiting the watershed area contributing to Mሶ େ୪ and: ࢂሶ ࢚࢛࢕ = ሶࡸ .ࢗࡱ																																																		࢚࢛࢕࡯/	வଵଶ଴଴࡭࢒࡯ ૟. ૞ 

Upper and lower bounds on recharge are estimated using: a range of average regional 

chloride loading found in literature (60 to 107 mg/m2/year); Digital elevation model map is used 

to estimate watershed areas (total area and only area above 1,200 m ASL) (Figure 6.9); and 

average chloride concentrations in groundwater downgradient from each watershed at locations 

where a steady state can be assumed (corrected 14C ages at or below 8,000 YBP) (Figures 6.4, 

6.10). The lower bounds for each watershed are calculated using the lower Cl loading, and areas 

abode 1,200 m ALS; the upper bounds are calculated with the higher Cl loading and the total 

area of each watershed. 

6.3 RESULTS AND DISCUSSION  

6.3.1 Groundwater chloride concentration 

Figure 6.4 shows the concentration of chloride in the groundwater. Well locations are marked 

and contours are drawn with Surfer™8 (Golden Software Inc., 2008) software using the 

software’s existing Natural Neighbor gridding method. The most noticeable trend is that lower 

concentrations of chloride are present beneath and near Fortymile Wash and this trend extends 

down the Wash following its shape until its confluence with the Amargosa River.  
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Furthermore, Flint et al. (2002) estimated areal recharge on Yucca Mountain just to the west 

of Fortymile Wash by using a Darcian approach, neutron logging of moisture profile (channel, 

terrace, side slope, and ridge top), borehole temperature profiles, Maxey and Eakin empirical 

method, and CMB (pore water, perched water, and groundwater). Flint et al. (2002) found 

evidence for net infiltration rates of 0.8 to 9.9 mm/yr on the ridge top (1400 m), with a mean 

chloride concentration of 33 ppm; and 1.0 to 1.5 mm/yr, with mean chloride concentration of 48 

ppm on the lower side slopes of the mountain and terrace below (1200 m), beneath areas with 

negligible soil cover. This was associated with average pore water chloride concentrations of 48 

ppm compared with chloride concentrations in the groundwater below of 7 ppm. The 

discrepancy in chloride concentrations between infiltration and groundwater mean that present 

day areal recharge from the mountaintop, sides, or terraces cannot be primarily responsible for 

current groundwater. 

6.3.2 Borehole chloride mass balance (CMB) 

Figure 6.2 shows the chloride concentrations from boreholes: (a) 22S; (b) 23P; (c) 24P; and 

(d) 29P. Each borehole’s chloride profile exhibits a concentration bulge at the upper-most part of 

the profile (i.e., at relatively shallow depths) which is typically observed in arid regions and is 

attributed to large amounts of evapotranspiration at the surface. The increase in chloride 

concentration near the water table is evidence of upward migration of water from the water table 

driven by net evaporation in the vadose zone rather than infiltration. Tyler el al. (1995) examined 

three deep boreholes in Southern Nevada at an elevation of 1,000 m and also found a soil 

chloride surface bulge characteristic of the absence of areal recharge 

Integration of the chloride mass with depth and dividing by assumed chloride loading 

(Woocay and Walton, 2008a) is shown in Figure 6.3 for 22S, the borehole with the most 
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complete data. The sites of all four boreholes indicate that significant areal infiltration has not 

occurred at these sites for the past ~10,000 years.  

6.3.3 Water chemistry 

Water chemistry for collected surface runoff, groundwater, and precipitation samples is 

summarized in Table 6.2. The ratios represent median normalization by the median chloride 

concentration for each category. Although precipitation samples underwent an unknown and 

variable amount of evaporation prior to sampling, relative ion concentrations should not change 

significantly in dilute waters with evaporation.  

Table 6.2: Median Relative and Absolute Concentration of Measured Ions. 

 Measured Ion Precipitation Surface runoff Groundwater 

Cl- median (meq/l) 0.05 0.18 0.2 

(HCO3
-; HCO3

-/Cl-) (median; median ratio) (0.20; 3.78) (1.82; 9.95) (2.24; 11.06) 

(SO4
2-; SO4

2-/Cl-) (median; median ratio) (0.08; 1.55) (0.15; 0.83) (0.58; 2.88) 

(Ca2+; Ca2+/Cl-) (median; median ratio) (0.19; 3.66) (1.20; 6.56) (0.78; 3.85) 

(Mg2+; Mg2+/Cl-) (median; median ratio) (0.04; 0.73) (0.29; 1.60) (0.18; 0.87) 

(K+; K+/Cl-) (median; median ratio) (0.01; 0.27) (0.16; 0.89) (0.13; 0.64) 

(Na+; Na+/Cl-)  (median; median ratio) (0.04; 0.85) (0.35; 1.93) (1.92; 9.50) 

 

A number of changes occur. Chloride increases between precipitation and surface runoff as 

previously deposited salts are partially removed from the soil. Most precipitation events do not 

lead to surface runoff and result in chloride accumulation in the shallow sediments as essentially 

all of the precipitation evaporates or is transpired. Between precipitation and runoff there are 

(relative to chloride) increases in bicarbonate, calcium, magnesium, sodium, and potassium, and 
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Benson and Klieforth (1989) studied stable isotopes in precipitation and groundwater in the 

Yucca Mountain area and concluded groundwater recharge occurred by infiltration of cold-

season precipitation, probably along the bottom of Fortymile Canyon. Savard (1995, 1996, 1998) 

found that neutron logging in some selected boreholes in Fortymile Wash showed increases in 

the volumetric water contents of the unsaturated alluvium indicating that water infiltrated to a 

depth of approximately five meters, and in subsequent visits to the wash, he identified evidence 

of the streamflow events.  

Figure 6.8 presents a Piper Plot showing precipitation, surface runoff, and groundwater. A 

number of evolutionary changes are evident between precipitation, runoff and incorporation into 

groundwater. Simulations with the PHREEQC code indicate that the observed changes are 

consistent with a number of anticipated processes. Moving from precipitation to surface runoff, 

calcium, magnesium (and potassium) cations are replaced with sodium, whereas for anions, 

sulfate decreases and alkalinity increases. Between surface runoff and groundwater sulfate 

increases and alkalinity decreases slightly. The evolution is clearest in the upper diamond of the 

Piper Plot where an increase in alkalinity (precipitation to runoff) is followed by an increase in 

sodium (runoff to groundwater).  

PHREEQC results indicate that the surface runoff and groundwater are both near saturation 

with calcite and dolomite suggesting the precipitation of some type of calcium/magnesium 

carbonate. Weathering of silicate minerals may release sodium and alkalinity with the increased 

alkalinity driving precipitation of carbonates. Illite, a potential sink for potassium, is 

supersaturated in surface runoff. The increase in sulfate could be potentially from oxidation of 

small amounts of sulfide minerals in the volcanic rock sediments. 
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contribution (6,400 acre-ft/yr) coming from the Fortymile Wash watershed. Whereas, using the 

higher loading of 107 mg/m2/year, each watershed’s entire area and with respective average 

chloride concentration, a maximum recharge of 24,800 acre-ft/yr is estimated, with the greatest 

contribution (16,000 acre-ft/yr) again coming from the Fortymile Wash watershed. 

Table 6.3: Estimates Effective Recharge into the Amargosa Valley 

Recharge 
(Acre-ft/y) 

Groundwater 
Average Cl 

(mg/L) 
Area (km2) 

Chloride Loading (mg/m2/year) 

60 107 

Fortymile 
Wash 

7 
Watershed   8,992   16,036 

>1,200m 925 6,431  11,469   

Crater Flat 20 
Watershed 437  1,063   1,896 

>1,200m 178 433  772   

Oasis 
Valley 

75 
Watershed 5,924  3,842   6,852 

>1,200m 5,802 3,763  6,711   

TOTAL 
Watershed 7,655  13,898   24,784 

>1,200m 6,906 10,627  18,952   

 

Rush (1970) estimated average annual total recharge (from precipitation and underflow 

of groundwater) and discharge for the Amargosa Desert and Ash Meadows (southern Amargosa 

Desert) regional system on the order of 33,000 and 17,000 acre- feet, respectively. Walker and 

Eakin (1963) estimated the average annual total recharge to the groundwater of Amargosa Desert 

and Ash Meadows on the order of 24,000 acre-ft. of this amount 17,000 acre-feet are dicharged 

by the springes and evaporation, and 7000 acre-feet is potentially available for pumping from 

groundwater in Amargosa Desert. 

6.4 CONCLUSIONS 

The close agree with between chloride concentrations in the surface runoff with groundwater, 

combined with the distinct plume of low chloride concentrations beneath Fortymile Wash, 
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suggest that infiltration of surface runoff is the primary source of the low chloride plume. 

Upgradient sources of recharge water from Rainer Mesa to the north would be unlikely to follow 

the surface representation of the wash so precisely. Carbon-14, age dating, using dissolved 

organic carbon – which should give upper bounds on age – give age dates of 5,500 – 9,000 years 

(Thomas and others, 2004). Woocay and Walton (2008a) found slightly younger dates from 

corrected 14C concentrations in dissolved inorganic carbon with younger waters moving north 

along Fortymile Wash. The source of the low chloride groundwater plume thus appears to be 

from a combination of past and present day infiltration of surface runoff in the form of focused 

infiltration along stream channels following large storm events. This study suggests that 

infiltration of surface runoff from large storm events in region is a source of recharge more 

important that previously realized. Additionally, recharge in semi-arid zones should be 

reevaluated to consider focused recharge at ephemeral arroyos which is not taken into account by 

the CMB method. 

The observed mixture of slow areal recharge on ridge tops, no observable (or even negative) 

recharge in the desert, and focused recharge of high quality water along the ephemeral streams 

complicates estimating recharge rates. CMB appears to be a valid methodology for estimating 

higher elevation areal recharge. At lower elevations, the recharge of surface runoff occurs 

without taking all associated chloride (i.e., the liquid water and chloride no longer track each 

other). Without the ability to accurately separate the mass of chloride left in the shallow 

sediments from the mass of chloride in the infiltrating runoff, solving for the recharge volume 

from the CMB is not possible. The applicability of the CMB breaks down in moving from the 

climatic conditions on the ridge tops (1,400 m elevation) to the lower elevations (1,000 m 

elevation) when the elevation loss causes a shift from areal infiltration to chloride accumulation.  



 194

Net infiltration volume is estimated in the Amargosa Valley from 10,600 to 24, 800 acre-

ft/yr by using annual chloride loading, average groundwater chloride concentrations, and DEM 

watershed estimation. It is clear from the calculations that the greatest contribution of this 

recharge is coming from Fortymile Wash, this results matched with the results obtained from the 

literature, especially the results that obtained from (Walker and Eakin, 1963) which estimated the 

groundwater recharge in Amargosa Desert on the order of 24,000 acre-feet/yr. 
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Chapter 7 

7. General Conclusions 

This study covers groundwater recharge from the surface runoff and infiltration in arid 

environments. The dissertation presented noval methods and results in identifying interaction of 

surface runoffs and infiltration with groundwater, groundwater flow patterns, groundwater 

recharge and geochemical evolution around Fortymile Wash near Yucca Mountain.  Chapters 2 

through 6 were covered specific issues: identification of probable groundwater paths in the 

Amargosa Desert Vicinity, groundwater recharge in the Amargosa Desert using surface-runoff 

chemistry, and groundwater recharge in southern Nevada.  

The chemical speciation of the study area’s groundwater indicates that free ion species 

represent more than 90% each of the elements Ca, Cl, F, K, Mg and Na in most of the analyzed 

groundwater samples. For the elements C, S and Si the dominant species are HCO3
-; SO4

2- and 

H4SiO4, respectively. Saturation indices indicate that the groundwater in the study area is 

undersaturated with respect to anhydrite, chrysotile, dolomite, fluorite, gypsum, halite, quartz 

and sepiolite, oversaturated with respect to talc, and near saturation with respect to amorphous 

silicate, aragonite, calcite and chalcedony. The oversaturated minerals may precipitate and 

adversely affect the aquifer properties. Similarly, the undersaturated minerals, if present, will 

dissolve from aquifer rock during groundwater flow, which will increase its porosity and 

permeability. The minerals near saturation reflect thermodynamic equilibrium between the 

groundwater and the specified solid phase.  

Principal component factor analysis and k-means cluster analysis applied to Amargosa 

Desert’s groundwater major ions, ion exchange, and SI describe the system through 4 factors, 
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identify six hydrogeochemical facies, and allow the visualization of the processes that govern 

their evolution. In the factor analysis, factor 1 (29% of the variance) is dominated by Mg, 

alkalinity and Ca, whereas factor 2 (26% of the variance) is primarily composed of Cl, Na and 

SO4. The remaining two factors explain 31% of the variance, dominated by Ca/Na ion exchange 

in the third factor and F- in the fourth factor. Factor 1 differentiates clusters 1, 3, and 6 (low Ca–

Mg values) from clusters 2 and 4. Factor 2 separates cluster 3 with high Cl–Na values from the 

other clusters. Factor 3 separates Na-dominated waters (clusters 1 and 5) from the other clusters. 

Factor 4 differentiates the three Ca–Mg–HCO3 groups from each other on the basis of F-. The k-

means cluster analysis produced six groups, which are presented on biplots to separate the 

samples into four basic factors.  

The spatial plots of factor-score contours delineate areas influenced by particular 

hydrochemical processes and indicate the direction of change in that process (perpendicular to 

the contour); they allow the exposition of hydrochemical signatures indicating groundwater flow 

paths and their interaction with the geologic media. Together, factor-score contours and 

hydrochemical facies indicate the three potential groundwater flow paths or signatures presented 

in Figures 3.4–3.7. The hydrochemical and statistical analysis shows that the first major flow 

path of the study area’s groundwater is beneath the Amargosa River, while the second one 

follows the trace of Fortymile Wash and its convergence with the Amargosa River. The third 

flow path is related to the trace of the Gravity Fault, Rock Valley and Death Valley. The 

signatures of major ion chemistry appear to be obtained near the region of infiltration, with little 

change along the flow paths. The high values of factor 1, which represent Mg2+ and Ca2+, are 

located at Striped Hills, Skeleton Hills, and Crater Flat, which are downgradient of outcrops of 

the underlying carbonate aquifer. The high values of factor 2, which represent Cl- and Na+, are 
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found near the Funeral Mountains, around Oasis Valley, and SE of Fortymile Wash. The high 

values of factor 3, representing Ca2+/(Na+)2, are found at Ash Meadows, Crater Flat, Striped 

Hills, and Skeleton Hills, whereas low values are found at northern and southern Yucca 

Mountain and along its west face. Finally, the low values of factor 4, which correspond to low 

concentrations of F- and low fluorite SI, are found encompassing Crater Flat, Striped Hills, and 

Skeleton Hills, whereas the high concentrations are found at Ash Meadows, Death Valley, and 

the west face of Yucca Mountain. The geochemical data support north-south flow along fractures 

that differs from the hydraulic gradient in the areas of clusters 1, 5 and 6. In the Ash Meadows 

area, which is near the edge of the study area, cluster 2 suggests a more east–west flow path. 

Based on the previous analysis, the study area’s groundwater flows from north to south, 

following the traces of the Amargosa River and Fortymile Wash until they converge, and from 

east to west from Rock Valley (east of Skull Mountain), along the trace of Gravity Fault toward 

Death Valley.  

Studies of Amargosa Desert regional groundwater indicate that infiltration of surface-

runoff occurs in the valleys subsequent to runoff-producing storms and this infiltration represents 

a large portion of the groundwater recharge. Sampling of surface-runoff in a desert environment 

from ephemeral arroyos is complicated by a number of practical concerns. Surface-runoff events 

are uncommon, sometimes separated by gaps of more than a year, and difficult to forecast in 

advance. 

This study presents a modification to the lysimeter called "Surface-Runoff Sampler 

(SRS)" designed to provide a stronger collection surface, more efficient connections for sample 

collection, and to measure particularly the first flush of runoff. In the absent of runoff a SRS acts 
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as lysimeter. SRS design has the advantages of low cost, low maintenance, and being long lived. 

Disadvantages are that it captures both precipitation and runoff and requires manual pumping.  

Five different sub-regions were selected in the Amargosa Desert region for runoff 

sampler emplacement to collect runoff water in order to measure the chemical characteristics of 

runoff water that has contacted and leached some of the top soil, which believed to be an 

important source of groundwater recharge in the area. In total sixty runoff samplers were 

installed at thirty different locations in the major arroyos in the sub-regions as follows: 24 

samplers in Fortymile Wash, 20 in western side of Yucca Mountain, 8 in the Amargosa River, 4 

in Rock Valley, and 4 in the southern Amargosa Desert (Ash Meadows area). At each site 

location, a rain gauge was installed to collect water precipitation, and sediment samples were 

sampled before and after the storm events that occurred during the research time period (January 

2009 to January 2011). The runoff sampler design proved its ability to resist the arid weather 

conditions, capture runoff water, and provides unique data. In total, 167 runoff samples were 

collected from the washed sand filled sampler (WSB), 9 runoff samplers from natural alluvium 

filled sampler (NAB), in addition to 45 precipitation and 182 sediment samples, were collected 

during the period January 2009 and January 2011. Because of lack of data, runoff samples that 

were collected from the natural alluvium filled sampler were excluded from this research. 

Because the degree of evaporation is unknown the changes in chemistry between 

precipitation and runoff samples is best viewed in terms of the changes in chemical signature 

rather than in terms of individual concentrations. In non runoff producing storms the water has 

time to react with soil minerals prior to evaporation. When near complete evaporation of the 

water occurs the isotopic signature of the water will be lost, but any dissolved ions (and dry-fall) 

will remain in the shallow soil and sediments. When surface runoff occurs the new precipitation 
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mixes with shallow soil moisture and dissolves some of the precipitated salts in the desiccated 

soil. The soil samples represent a leaching of the shallow sediment in the stream bottom, but the 

most soluble salts in these samples (e.g., chloride) may have been leached by a runoff event prior 

to sampling. The soil leaching process also provided less contact time between soil and water 

than the infiltration process. 

Chemical analysis of precipitation, runoff, sediment, and groundwater show three 

potential clusters of the samples chemical constituents: leached, scavenged, and nutrients groups. 

Leached group is presented when constituent concentration in sediment is greater than that in 

precipitation and the concentration in runoff is in the middle like (TDS, total alkalinity, sodium, 

calcium, magnesium, potassium). Scavenged group is presented when the constituent 

concentration in precipitation and runoff is greater than that in sediment like (uranium). Nutrient 

cluster is presented when the chemical concentration in precipitation is greater than that in 

sediment which is greater than that in runoff, like (fluoride, sulfate, arsenic, copper, vanadium, 

bromide, and phosphate). 

ANOVA tests indicate that most of chemical constituents are statistically significant 

between sample types and sample locations, and chloride is statistically insignificant between 

runoff and groundwater.  

Piper diagram shows mixed cation-mixed anion-types between precipitation, runoff, and 

groundwater. In addition, it is show three hydrochemical faces, Ca/HCO3-type water in 

precipitation, Ca/HCO3 to Ca-(Na, K)/HCO3-type water in runoff, and (Na, K)/HCO3-type water 

in groundwater, and this could be because the dominance of hydrolysis reactions involving 

H2CO3 leaching of Na in the bed rocks. 
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Isotopes analysis shows that the distance from the meteoric water line which is indicative 

of the degree of evaporation, is similar for surface runoff and groundwater. The surface runoff 

samples exhibit a broader spread parallel to the meteoric water line. Isotopic data presents a local 

meteoric line as (δ2H= 6.83 δ18O+9.7), which is slightly δ18O enriched from the global meteoric 

water line. Precipitation is more enriched in terms of δ2H and δ18O than runoff and groundwater, 

and this is because the precipitation samples had evaporated between the time of precipitation 

and the time of sampling. Most of runoff samples are more enriched in terms of δ2H and δ18O 

than the groundwater from the same site location, and per site location runoff’s δ2H and δ18O 

depleted between Amargosa River, western side of Yucca Mountain, Fortymile Wash, and 

southern Amargosa Desert; whereas the groundwater’s δ2H and δ18O follow an opposite 

direction per location, i.e. it is enriched between Amargosa River, western side of Yucca 

Mountain, Fortymile Wash, and southern Amargosa Desert. This could mean that the southern 

Amargosa Desert location has highest infiltration rate, then Fortymile Wash, western side of 

Yucca Mountain, and Amargosa River, in addition, the groundwater beneath southern Amargosa 

Desert and Fortymile Wash is younger than that in the other location, and the groundwater under 

Amargosa River is the oldest. The most enriched groundwater could represent lower elevations 

and /or short rainfall events. 

PHREEQC results suggesting the precipitation of some type of calcium/magnesium 

carbonate (calcite and dolomite). Weathering of silicate minerals may release sodium and 

alkalinity with the increased alkalinity driving precipitation of carbonates. Illite, a potential sink 

for potassium, is supersaturated in groundwater. The increase in sulfate could be potentially from 

oxidation of small amounts of sulfide minerals in the volcanic rock sediments. 
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Together, the statistical analysis (descriptive statistics, box plots, and ANOVA), Piper 

diagram, stable isotopes analysis, and PHREEQC analysis for the precipitation, sediment, runoff 

and groundwater samples indicate that chloride and the stable isotopes of water show substantial 

overlap of values with underlying groundwater, consistent with the concept that infiltration of 

surface runoff is a major contributor to groundwater recharge in the study area.  Groundwater 

concentrations represent a larger collage of infiltration events than have been collected in the 

surface runoff sampling making an exact match unlikely, and the importance of surface runoff 

depends upon topography.  

The dissolution and weathering of minerals during and subsequent to the infiltration 

process, but not with large amounts of additional evaporation prior to deep infiltration, cause the 

increasing of analyte concentrations in groundwater. The influence of transpiration on the 

chemistry of infiltrating water is more complicated than that of evaporation given that chloride 

uptake differs between plants; leading to a combination of evaporative concentration at depth 

and transport to the surface with eventual recycling in leaves and dead plant materials. 

Groundwater total recharge in the Amargosa Desert is estimated by using the average 

annual precipitation rate, precipitation’s chloride concentrations, and groundwater’s chloride 

concentrations’ the results indicate that the groundwater recharge is on the order of 30,561 acre-

feet/yr, which is 9.5 percent of average annual precipitation, with the great contribution coming 

from western side of Yucca Mountain and Fortymile Wash. Moreover, another estimate for the 

groundwater net infiltration volume is provided by this study using average annual chloride 

loading (wet and dry), average groundwater chloride concentrations, and DEM watershed area 

estimation; the results indicate that groundwater in the Amargosa Valley is recharged in the 

range 10,600-24,800 acre-feet/yr. in both methods, the greatest contribution of the groundwater 
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recharge in the Amargosa Desert is coming from Fortymile Wash, these results matched with the 

results obtained from the literature, especially the results that obtained from Walker and Eakin, 

(1963) and Rush (1970) which estimated the groundwater recharge in Amargosa Desert on the 

order of 24,000 acre-feet/yr. 

Along the mountain crest, vadose zone chloride concentrations are higher than in the 

groundwater beneath Fortymile Wash and higher than in the surface runoff. The data above 

1,200 m elevation are consistent with areal based infiltration with evaporative concentration. In 

the lower desert areas with an elevation near 1,000 m borehole samples indicate accumulation of 

chloride in the shallow sediments and potentially net upward movement of water vapor 

(evaporation from the water table). The elevation of no areal recharge appears to be between 

1,000 and 1,200 m. Given the relatively high chloride concentrations in the areal recharge from 

the study area, the low concentrations of chloride in the groundwater could result from a) older 

water representing a prior pluvial climate, b) areal recharge from higher elevation areas up 

gradient, and/or c) infiltration of surface runoff. Given the relatively high chloride concentrations 

in the areal recharge from the study area, the low concentrations of chloride in the groundwater 

could result from a) older water representing a prior pluvial climate, b) areal recharge from 

higher elevation areas up gradient, and/or c) infiltration of surface runoff. The close agree with 

between chloride concentrations in the surface runoff with groundwater, combined with the 

distinct plume of low chloride concentrations beneath Fortymile Wash, suggest that infiltration 

of surface runoff is the primary source of the low chloride plume. Upgradient sources of recharge 

water from Rainer Mesa to the north would be unlikely to follow the surface representation of 

the wash so precisely. Carbon-14, age dating, using dissolved organic carbon - which should 

give upper bounds on age - give age dates of 5,500-9,000 years (Thomas and others, 2004). 
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Woocay and Walton (2008a) found slightly younger dates from corrected 14C concentrations in 

dissolved inorganic carbon with younger waters moving north along Fortymile Wash. The source 

of the low chloride groundwater plume thus appears to be from a combination of past and present 

day infiltration of surface runoff in the form of focused infiltration along stream channels 

following large storm events. This study suggests that infiltration of surface runoff from large 

storm events in region is a source of recharge more important that previously realized. 

Additionally, recharge in semi-arid zones should be reevaluated to consider focused recharge at 

ephemeral arroyos which is not taken into account by the CMB method. 

The observed mixture of slow areal recharge on ridge tops, no observable (or even 

negative) recharge in the desert, and focused recharge of high quality water along the ephemeral 

streams complicates estimating recharge rates. CMB appears to be a valid methodology for 

estimating higher elevation areal recharge. At lower elevations, the recharge of surface runoff 

occurs without taking all associated chloride (i.e., the liquid water and chloride no longer track 

each other). Without the ability to accurately separate the mass of chloride left in the shallow 

sediments from the mass of chloride in the infiltrating runoff, solving for the recharge volume 

from the CMB is not possible. The applicability of the CMB breaks down in moving from the 

climatic conditions on the ridge tops (1,400 m elevation) to the lower elevations (1,000 m 

elevation) when the elevation loss causes a shift from areal infiltration to chloride accumulation. 

Further sample collection, statistical analysis, and infiltration modeling are required to 

gain a better understanding of hydrologic processes controlling groundwater recharge, and thus 

the sustainable yield of groundwater in arid environments. 
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