Nye County Groundwater Evaluation Drilling Program

Levi Kryder Nye County NWRPO May 5, 2011

Outline

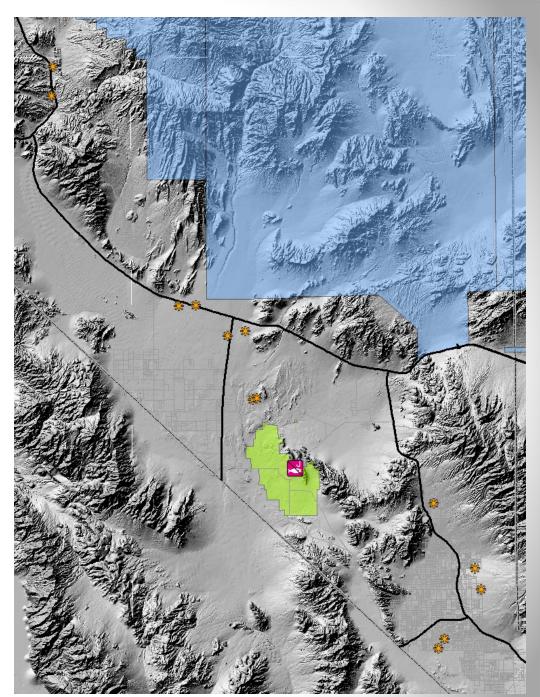
- Groundwater Evaluation program
- Drilling program objectives
- Borehole locations
- Data collection
- Results by geographic location
- Future work

Groundwater Evaluation Program

- Funding provided by DOE for characterization of water resources in southern Nye County
 - o Grant number DE-FG52-2006NA27205
 - o Original award of \$2,477,000 in April 2006
 - o Remaining \$1,511,000 transferred to NWRPO in April 2010
- Work accomplished under original grant:
 - Geophysical studies and determination of soil characteristics near Ash Meadows (BYU)
 - o Established Nye County Water District
 - o Construction of groundwater flow model for Pahrump Valley (DRI)
- Work elements developed for remaining funding:
 - o Drilling Program (completed)
 - o Evapotranspiration study (USGS)
 - o Southern Amargosa eMbedded Model (USGS)
 - o Outreach and resource management

Drilling Program Objectives

 In general, the objectives were to infill data gaps in the water level measurement program, better understand geologic controls on ground water flow, and determine aquifer characteristics


• Specific objectives:

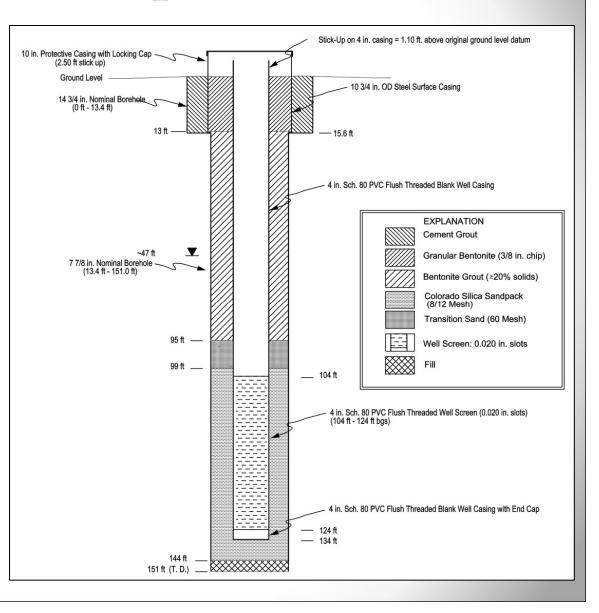
- o Pahrump Valley infill data gaps in WLMP, especially on the Pahrump Fan
- Amargosa Desert determine head relationships near the Gravity Fault, collect baseline flow and chemical data
- Oasis Valley collect baseline flow and chemical data in areas (far) down gradient from previous nuclear tests
- Provide data to assist Nye County Water District with basic water resource characterization in southern Nye County

Borehole Locations

Location	Number of Wells
Pahrump Valley	5
Amargosa Desert	7
Oasis Valley	2

- Hydro Resources, Inc.
- 14 boreholes 4,600 feet total drilled
- Two phases of drilling:
 - o Phase I May 2010 to June 2010
 - Phase II November 2010 to January 2011

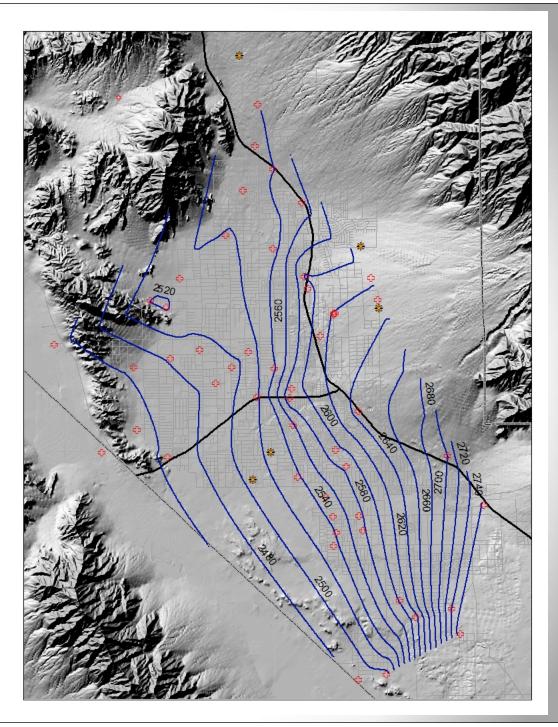
Drilling and Borehole Data Collection

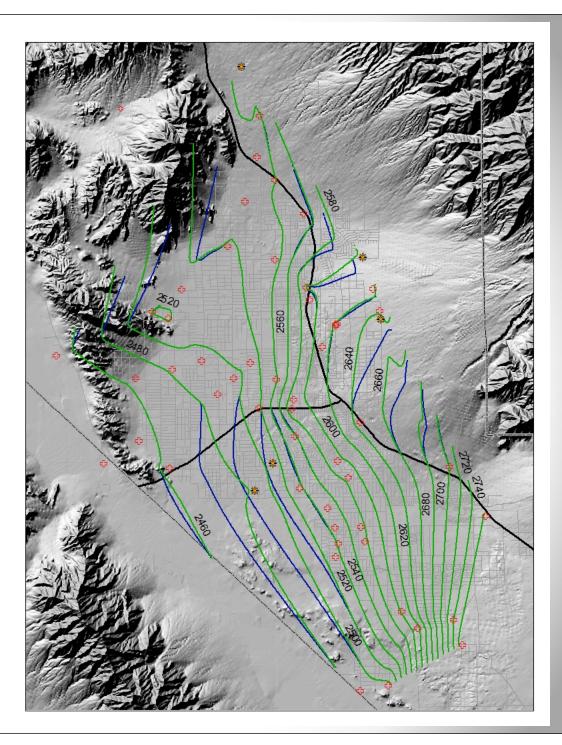

- All data collected under NWRPO Quality Assurance
 Program
- Drilling
 - o All boreholes located on private lands or existing EWDP sites
 - Air foam, conventional circulation
 - o 10-inch surface casing set to 20 feet, 8-inch borehole drilled to total depth
 - o Boreholes drilled to approximately 100 feet below water table
 - o Shallowest borehole was OV-2 (119.8 feet), deepest was PV-1 (610 feet)

Borehole data collection

- o Cuttings samples collected every 5 feet
- o Sediments logged using USCS descriptions
- o Consolidated rock logged using quantitative descriptions
- o Borehole geophysical logs
 - Open-hole (gamma, resistivity, temperature, caliper)
 - Completion (gamma, temperature, fluid resistivity, density)z

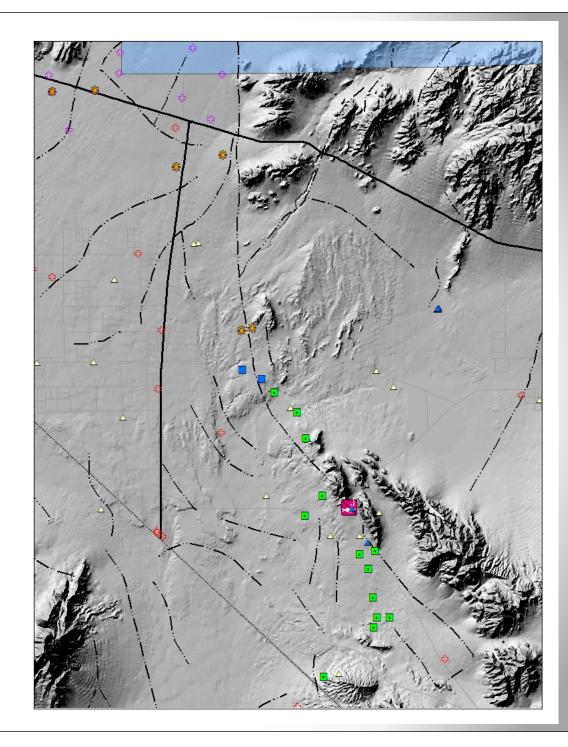
Well Completion

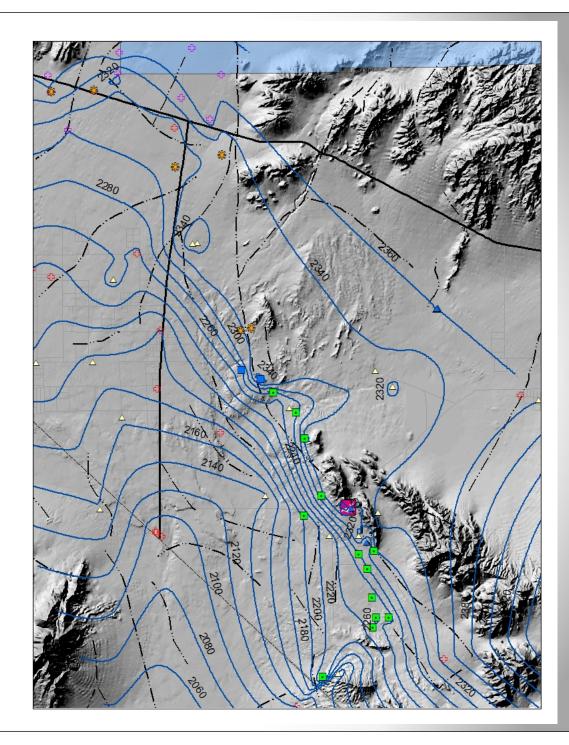

- Monitor well completion
 - Wells completed with 4inch Schedule 80 PVC
 - Original plan was to complete with 4.5-inch PVC, allowing use of higher capacity 4-inch pump during pump testing
 - Sandpack and grout emplaced using tremmie methods
 - Surface completion with protective steel casing, concrete pad, and locking well cap


Pump Testing and Water Sampling

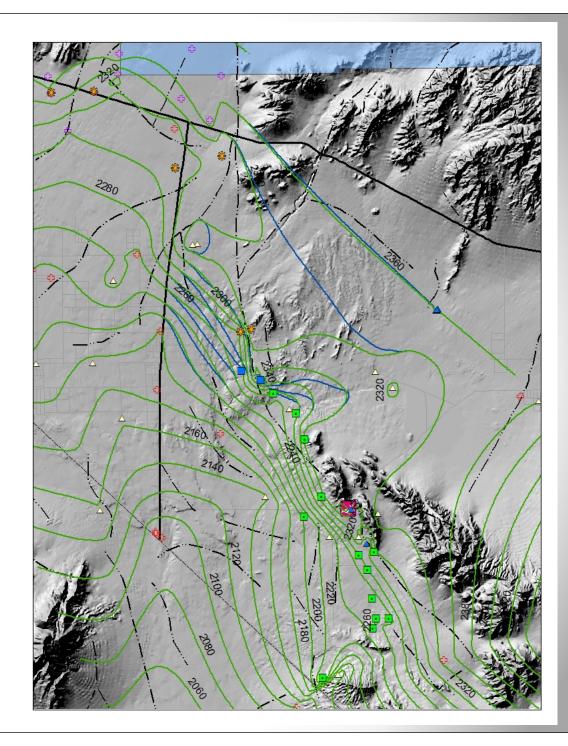
- Work being conducted now
- Pump tests
 - 4-inch casing limited us to use of 3-inch pumps (low flow rates and very little aquifer stress)
 - o Step testing
 - o Constant discharge testing
- Water chemistry
 - Working with DRI (Reno), DRI (Las Vegas), BYU, and other independent labs to analyze water samples for the following:
 - Major anions and cations
 - Metals
 - Selected isotopes
 - Tritium
 - Strontium
 - Noble gases

Pahrump Water Table Elevation – no GWE wells


Pahrump Water Table Elevation – with GWE wells


Results – Pahrump Valley

- Infill data gaps in water level wells
- GWE wells and WLMP wells help to refine water level contours within Pahrump Valley
- Pump testing conducted in GWE wells provides additional aquifer information that is lacking in data gap areas
- Water chemistry data will expand on existing regional data set


Amargosa Area Wells and Springs

Amargosa Water Table Elevation – no GWE wells

Amargosa Water Table Elevation – with GWE wells

Results – Amargosa Desert

• Gravity Fault

- Thicker sequences on the west side (hanging wall) of the fault, presumably due to accumulation of sediments in down-dropped basins
- o Thinner stratigraphic sequences on the east side
- Water table elevation on the east side of the Gravity Fault (GF-4) is 74 feet higher than on the west side (GF-3PA)
 - Similar relationships seen in USGS wells to the south where water table elevation at GF-2A on the east side of the Gravity Fault is 87 feet higher than GF-1 located west of the fault
 - o Compartmentalized stratigraphy
 - At GF-4 water production at 110 feet in coarse-grained permeable sediments was 75 gpm and at GF-4PA at same depth in less permeable clayey sediments production was 25 gpm
 - Possibly graben-like features bounded by high angle structures act as barriers between sedimentary units with contrasting permeabilities
 - At GF-4 the sediments contain 200 feet of coarse-grained gravel and sand that is absent 60 feet to the west at GF-4PA
- Caution should be taken when generalizing hydrogeologic properties along the trace of the Gravity Fault!
- Need more wells to the north along the Gravity Fault
- Water table elevation contour refinement

Results – Oasis Valley

- Artesian conditions at OV-1
- OV-1 is a flowing artesian well with a head approximately 2 ft above ground surface
- o Located in Oasis Valley spring discharge area
- Problems with OV-1 completion
- o Artesian pressure compromised the integrity of grout seal
- o Efforts to contain leak were unsuccessful
- o Current plan is to plug back and abandon
- OV-2 is a viable well situated within prominent discharge area within Amargosa River channel

Future Work

- Geophysical survey (TEM, CSAMT, resistivity)
 transects across the Gravity Fault
- Additional wells straddling the Gravity Fault to examine head relationships
- Incorporate geologic and hydrologic data into SAMM framework as appropriate
- Examine connection between surface water infiltration and groundwater

Acknowledgements

- Drilling and sampling crew from Nye County and Hydro Resources
- John Klenke, Bob Wilcoxon, and Jamie Walker
- Nye County management
- Department of Energy and Bruce Stolte for continued support
- Tom Buqo for starting the whole GWE grant program

